In order to introduce a right truncated version of the Benini distribution, we derive its probability density function, its distribution function, its average value, its kth moment about the origin, its median, how to randomly generate its values, and the maximum likelihood estimator for its three unknown parameters. The astrophysical application of the Benini distribution and its right truncated version is to the initial mass function for stars.
References
[1]
Benini, R. (1905) I diagrammi a scala logaritmica (a proposito della graduazione per valore delle successioni ereditarie in italia, francia e inghilterra). Giornale deglieconomisti, 30, 222.
[2]
Pareto, V. (1896) Cours d’economie politique. Rouge.
[3]
Kleiber, C. (2013) On Moment Indeterminacy of the Benini Income Distribution. Statistical Papers, 54, 1121-1130. https://doi.org/10.1007/s00362-013-0535-9
[4]
Vaidyanathan, V. (2021) Benini Distribution: A Less Known Income-Size Distribution. 23rd Annual Conference, Hyderabad, 24-28 February 2021, 93-99.
[5]
Benini, R. and Jannaccone, P. (1906) Principii di statistica metodologica (Utet, Torino).
[6]
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press.
[7]
Evans, M., Hastings, N. and Peacock, B. (2000) Statistical Distributions. 3rd Edition, Wiley.
[8]
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions. 2nd Edition, Wiley.
[9]
Salpeter, E.E. (1955) The Luminosity Function and Stellar Evolution. The Astrophysical Journal, 121, 161S.
[10]
Kroupa, P. and Weidner, C. (2003) Galactic-Field Initial Mass Functions of Massive Stars. The Astrophysical Journal, 598, 1076-1078. https://doi.org/10.1086/379105
[11]
Goldstein, M.L., Morris, S.A. and Yen, G.G. (2004) Problems with Fitting to the Power-Law Distribution. The European Physical Journal B, 41, 255-258. https://doi.org/10.1140/epjb/e2004-00316-5
[12]
Aban, I.B., Meerschaert, M.M. and Panorska, A.K. (2006) Parameter Estimation for the Truncated Pareto Distribution. Journal of the American Statistical Association, 101, 270-277. https://doi.org/10.1198/016214505000000411
[13]
Zaninetti, L. and Ferraro, M. (2008) On the Truncated Pareto Distribution with Applications. Open Physics, 6, 1-6. https://doi.org/10.2478/s11534-008-0008-2
[14]
White, E.P., Enquist, B.J. and Green, J.L. (2008) On Estimating the Exponent of Power-Law Frequency Distributions. Ecology, 89, 905-912. https://doi.org/10.1890/07-1288.1
[15]
Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in Fortran. The Art of Scientific Computing. Cambridge University Press.
[16]
Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723. https://doi.org/10.1109/tac.1974.1100705
[17]
Liddle, A.R. (2004) How Many Cosmological Parameters? Monthly Notices of the Royal Astronomical Society, 351, L49-L53. https://doi.org/10.1111/j.1365-2966.2004.08033.x
[18]
Godlowski, W. and Szydowski, M. (2005) Constraints on Dark Energy Models from Supernovae. In: Turatto, M., Benetti, S., Zampieri, L. and Shea, W., Eds, 1604-2004: Supernovae as Cosmological Lighthouses, Astronomical Society of the Pacific, 508-516.
[19]
Kolmogoroff, A. (1941) Confidence Limits for an Unknown Distribution Function. The Annals of Mathematical Statistics, 12, 461-463. https://doi.org/10.1214/aoms/1177731684
[20]
Smirnov, N. (1948) Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19, 279-281. https://doi.org/10.1214/aoms/1177730256
[21]
Massey, F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46, 68-78. https://doi.org/10.2307/2280095
[22]
Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., Irwin, M., et al. (2008) The Monitor Project: Rotation of Low-Mass Stars in NGC 2362—Testing the Disc Regulation Paradigm at 5 Myr. Monthly Notices of the Royal Astronomical Society, 384, 675-686. https://doi.org/10.1111/j.1365-2966.2007.12725.x
[23]
Moitinho, A., Alves, J., Huélamo, N. and Lada, C.J. (2001) NGC 2362: A Template for Early Stellar Evolution. The Astrophysical Journal, 563, L73-L76. https://doi.org/10.1086/338503
[24]
Oliveira, J.M., Jeffries, R.D. and van Loon, J.T. (2009) The Low-Mass Initial Mass Function in the Young Cluster NGC 6611. Monthly Notices of the Royal Astronomical Society, 392, 1034-1050. https://doi.org/10.1111/j.1365-2966.2008.14140.x
[25]
Prisinzano, L., Damiani, F., Micela, G., Jeffries, R.D., Franciosini, E., Sacco, G.G., et al. (2016) The Gaia-ESO Survey: Membership and Initial Mass Function of the γ Velorum Cluster. Astronomy & Astrophysics, 589, A70. https://doi.org/10.1051/0004-6361/201527875
[26]
Panwar, N., Pandey, A.K., Samal, M.R., Battinelli, P., Ogura, K., Ojha, D.K., et al. (2018) Young Cluster Berkeley 59: Properties, Evolution, and Star Formation. The Astronomical Journal, 155, 1-12. https://doi.org/10.3847/1538-3881/aa9f1b
[27]
Brandner, W., Calissendorff, P. and Kopytova, T. (2023) Astrophysical Properties of 600 Bona Fide Single Stars in the Hyades Open Cluster. The Astronomical Journal, 165, Article 108. https://doi.org/10.3847/1538-3881/acb208
[28]
Zaninetti, L. (2024) New Probability Distributions in Astrophysics: XII. Truncation for the Gompertz Distribution. International Journal of Astronomy and Astrophysics, 14, 101-119. https://doi.org/10.4236/ijaa.2024.142007
[29]
Zaninetti, L. (2023) New Probability Distributions in Astrophysics: XI. Left Truncation for the Topp-Leone Distribution. International Journal of Astronomy and Astrophysics, 13, 154-165. https://doi.org/10.4236/ijaa.2023.133009
[30]
Zaninetti, L. (2022) New Probability Distributions in Astrophysics: X. Truncation and Mass-Luminosity Relationship for the Frèchet Distribution. International Journal of Astronomy and Astrophysics, 12, 347-362. https://doi.org/10.4236/ijaa.2022.124020
[31]
Zaninetti, L. (2021) New Probability Distributions in Astrophysics: V. The Truncated Weibull Distribution. International Journal of Astronomy and Astrophysics, 11, 133-149. https://doi.org/10.4236/ijaa.2021.111008
[32]
Zaninetti, L. (2021) New Probability Distributions in Astrophysics: VI. The Truncated Sujatha Distribution. International Journal of Astronomy and Astrophysics, 11, 517-529. https://doi.org/10.4236/ijaa.2021.114028
[33]
Zaninetti, L. (2020) New Probability Distributions in Astrophysics: II. The Generalized and Double Truncated Lindley. International Journal of Astronomy and Astrophysics, 10, 39-55. https://doi.org/10.4236/ijaa.2020.101004
[34]
Zaninetti, L. (2019) New Probability Distributions in Astrophysics: I. The Truncated Generalized Gamma. International Journal of Astronomy and Astrophysics, 9, 393-410. https://doi.org/10.4236/ijaa.2019.94027
[35]
Zaninetti, L. (2017) A Left and Right Truncated Lognormal Distribution for the Stars Advances in Astrophysics.
[36]
Zaninetti, L. (2013) A Right and Left Truncated Gamma Distribution with Application to the Stars. Advanced Studies in Theoretical Physics, 7, 1139-1147. https://doi.org/10.12988/astp.2013.310125
[37]
Zaninetti, L. (2013) The Initial Mass Function Modeled by a Left Truncated Beta Distribution. The Astrophysical Journal, 765, Article 128. https://doi.org/10.1088/0004-637x/765/2/128