|
四川盆地一次区域性暴雨天气过程分析——2023年7月11日至14日
|
Abstract:
基于成都信息工程大学气象台Micaps常规高空和地面观测资料、FY-2卫星云图资料和欧洲中心ERA5高分辨率再分析资料(0.25? × 0.25?),本文对2023年7月11日至14日四川盆地发生的一次持续性暴雨天气过程进行了诊断分析。结果表明,200 hPa高空急流显著增强;对流层低层切变线、西南涡和低空急流的维持,地面冷空气的南下,共同形成了此次暴雨过程的有利环流背景。高层辐散与低层辐合的垂直结构,持续且强烈的水汽供应为此次暴雨的发生提供了有利的动力及水汽条件。进一步分析发现,在地形辐合抬升的作用下,四川盆地东北部有明显的水汽辐合中心,配合正涡度区进一步加强了垂直上升运动;高温高湿的环境有利于中尺度对流系统的维持和发展,分析卫星云图发现盆地上空对流云团发展旺盛,伴随着密实对流云团的移动暴雨落区也在移动,是本次暴雨天气的主要中尺度对流系统。
Based on Micaps conventional upper-air and ground-based observations at the meteorological station of Chengdu University of Information Technology (CUIT), FY-2 satellite cloud map data and ERA5 high-resolution reanalysis data (0.25? × 0.25?) from the European Center, this paper provides a diagnostic analysis of a persistent torrential rainfall weather process occurring in the Sichuan Basin from July 11 to 14, 2023. The results show that the 200 hPa upper-level rapids were significantly enhanced; the maintenance of lower tropospheric shear, southwesterly vortex and lower-level rapids, and the southward movement of cold air at the surface together formed a favorable circulation background for this rainstorm process. The vertical structure of upper-level dispersion and lower-level convergence, and the sustained and strong water vapor supply provided favorable power and water vapor conditions for the occurrence of this rainstorm. Further analysis reveals that, under the effect of terrain convergence and uplift, there is a clear water vapor convergence center in the northeastern part of the Sichuan Basin, which further strengthens the vertical uplift movement together with the positive vorticity area; the high temperature and high humidity environment is conducive to the maintenance and development of mesoscale convective systems, and the analysis of the satellite cloud maps reveals that there is a vigorous development of convective clouds over the Basin, and the rainstorm fallout area is moving along with the movement of the dense convective clouds, which is the main mesoscale convective system of the stormy rain.
[1] | 李金建, 张宗磊, 马振峰, 等. 2008年9月四川盆地一次持续性暴雨过程初步诊断分析[C]//中国气象学会. 第26届中国气象学会年会灾害天气事件的预警、预报及防灾减灾分会场论文集: 2008年卷. 杭州, 2008: 2148-2156. |
[2] | 孙建华, 李娟, 沈新勇, 等. 2013年7月四川盆地一次特大暴雨的中尺度系统演变特征[J]. 气象, 2015, 41(5): 533-543. |
[3] | 雷丽娜. 四川“7∙9”特大暴雨洪灾致58人死亡175人失踪[Z/OL]. 2013. https://www.gov.cn/jrzg/2013-07/16/content_2449314.htm, 2013-07-16. |
[4] | 孙俊, 吴洪, 杨雪, 等. 2020年“8.11”四川芦山极端强降水特征及成因分析[J]. 高原山地气象研究, 2023, 43(2): 9-18. |
[5] | 肖红茹, 王佳津, 肖递祥, 等. 四川盆地暖区暴雨特征分析[J]. 气象, 2021, 47(3): 303-316. |
[6] | 龙柯吉, 康岚, 肖递祥, 等. 基于多模式预报的四川盆地强降水订正方法[J]. 暴雨灾害, 2024, 43(1): 54-62. |
[7] | 张武龙, 青泉, 杨景朝, 等. 触发四川盆地极端短时强降水的中尺度对流系统环境条件[J]. 成都信息工程大学学报, 2023, 38(3): 349-357. |
[8] | 丛芳, 陈朝平. 四川两次副高边缘型暴雨的预报偏差分析及模式检验对比[J]. 中低纬山地气象, 2022, 46(3): 39-46. |
[9] | 蒲学敏, 白爱娟. 高原涡与西南涡相互作用引发MCC暴雨的形成机制分析[J]. 气象科学, 2021, 41(1): 27-38. |
[10] | 段海霞, 姚秀萍, 刘新伟, 等. 中国西部地区暴雨过程高、低空急流耦合影响机制的个例研究[J]. 大气科学, 2023, 47(6): 1907-1924. |
[11] | 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理[M]. 北京: 气象出版社, 2000: 485-492. |