|
基于CSRR的无创血糖检测微波传感器设计
|
Abstract:
本文提出了一种新型便携式平面微波传感器设计,以提高无创血糖检测的便利性与准确性。该传感器采用四个中心对称菱形排列的圆形互补开口环谐振器(Complementary Split Ring Resonator, CSRR)单元,蚀刻在FR4介电基板的底部接地金属层上,并通过基板顶部的平面微带线耦合馈电。CSRR传感元件的设计使葡萄糖溶液与感应共振区域的电磁场产生强烈的相互作用,从而检测不同葡萄糖浓度样品的微小电磁特性变化,提升了血糖水平(Blood Glucose Level, BGL)检测的灵敏度。该传感器在0~20 GHz范围内表现出较高的灵敏度,通过调整模型尺寸,检测灵敏度由5.06 MHz/(100 mg/dL)提升至11.30 MHz/(100 mg/dL)。随着检测频率的提高,传感器的主要参数与检测灵敏度呈现高度的线性相关。
This paper proposes a novel design of portable planar microwave sensor aimed at enhancing the convenience and accuracy of non-invasive blood glucose detection. The sensor employs four circular Complementary Split Ring Resonator (CSRR) units arranged symmetrically in a diamond configuration, etched onto the bottom grounding metal layer of an FR4 dielectric substrate, and coupled fed through microstrip lines on the top surface of the substrate. The design of CSRR sensor elements allows strong interaction between glucose solution and the electromagnetic field in the resonance region, thereby detecting subtle electromagnetic variations characteristic of different glucose concentrations, enhancing the sensitivity of Blood Glucose Level (BGL) detection. The sensor demonstrates high sensitivity within the 0~20 GHz range, with sensitivity improving from 5.06 MHz/(100 mg/dL) to 11.30 MHz/(100 mg/dL) through adjustments in model dimensions. Moreover, as the detection frequency increases, the sensor’s primary parameters exhibit a highly linear relationship with detection sensitivity.
[1] | Whiting, D.R., Guariguata, L., Weil, C. and Shaw, J. (2011) IDF Diabetes Atlas: Global Estimates of the Prevalence of Diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94, 311-321. https://doi.org/10.1016/j.diabres.2011.10.029 |
[2] | 熊怡, 吴冬梅, 毛国菊, 等. 中国2型糖尿病自我血糖监测频率达标率及其影响因素的Meta分析[J]. 现代预防医学, 2024, 51(3): 507-513. |
[3] | 冯令戈. 连续血糖监测技术在糖尿病管理中的应用与发展[J]. 药学进展, 2023, 47(10): 790-800. |
[4] | 罗淑芳, 张威鹏, 潘莹. 连续血糖监测系统对比分析[J]. 中国医疗器械信息, 2021, 27(9): 8-9+30. |
[5] | 杨宇祥, 吴彬, 林海军, 等. 无创血糖检测技术研究进展[J]. 分析测试学报, 2022, 41(4): 578-586. |
[6] | 张馨予, 宋芳, 朱恒亮, 等. 红外光声光谱无创血糖检测技术[J]. 分析化学, 2023, 51(10): 1571-1583. |
[7] | Saha, S., Cano-Garcia, H., Sotiriou, I., Lipscombe, O., Gouzouasis, I., Koutsoupidou, M., et al. (2017) A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves Using Micro Strip Patch Antennas. Scientific Reports, 7, Article No. 6855. https://doi.org/10.1038/s41598-017-06926-1 |
[8] | Hofmann, M., Bloss, M., Weigel, R., Fischer, G. and Kissinger, D. (2012). Non-Invasive Glucose Monitoring Using Open Electromagnetic Waveguides. 2012 42nd European Microwave Conference, Amsterdam, 29 October-1 November 2012, 546-549. https://doi.org/10.23919/eumc.2012.6459152 |
[9] | Siegel, P.H., Lee, Y. and Pikov, V. (2014). Millimeter-Wave Non-Invasive Monitoring of Glucose in Anesthetized Rats. 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Tucson, 14-19 September 2014, 1-2. https://doi.org/10.1109/irmmw-thz.2014.6956294 |
[10] | Omer, A.E., Shaker, G., Safavi-Naeini, S., Kokabi, H., Alquié, G., Deshours, F., et al. (2020) Low-Cost Portable Microwave Sensor for Non-Invasive Monitoring of Blood Glucose Level: Novel Design Utilizing a Four-Cell CSRR Hexagonal Configuration. Scientific Reports, 10, Article No. 15200. https://doi.org/10.1038/s41598-020-72114-3 |
[11] | Baena, J.D., Bonache, J., Martin, F., Sillero, R.M., Falcone, F., Lopetegi, T., et al. (2005) Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines. IEEE Transactions on Microwave Theory and Techniques, 53, 1451-1461. https://doi.org/10.1109/tmtt.2005.845211 |
[12] | Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S.F. and Abbott, D. (2014) Dual-Mode Behavior of the Complementary Electric-LC Resonators Loaded on Transmission Line: Analysis and Applications. Journal of Applied Physics, 116, Article ID: 083705. https://doi.org/10.1063/1.4893751 |
[13] | Omer, A.E., Gigoyan, S., Shaker, G. and Safavi-Naeini, S. (2020) WGM-Based Sensing of Characterized Glucose-Aqueous Solutions at mm-Waves. IEEE Access, 8, 38809-38825. https://doi.org/10.1109/access.2020.2975805 |
[14] | Kim, J., Babajanyan, A., Hovsepyan, A., Lee, K. and Friedman, B. (2008) Microwave Dielectric Resonator Biosensor for Aqueous Glucose Solution. Review of Scientific Instruments, 79, Article ID: 086107. https://doi.org/10.1063/1.2968115 |
[15] | Omer, A.E., Shaker, G. and Safavi-Naeini, S. (2020) Portable Radar-Driven Microwave Sensor for Intermittent Glucose Levels Monitoring. IEEE Sensors Letters, 4, 1-4. https://doi.org/10.1109/lsens.2020.2986208 |
[16] | 胡敏, 肖夏, 宋航, 等. 基于Debye模型的微波无创血糖浓度检测[J]. 激光与光电子学进展, 2020, 57(23): 100-108. |
[17] | Hofmann, M., Fischer, G., Weigel, R. and Kissinger, D. (2013) Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications. IEEE Transactions on Microwave Theory and Techniques, 61, 2195-2204. https://doi.org/10.1109/tmtt.2013.2250516 |
[18] | Yilmaz, T., Foster, R. and Hao, Y. (2019) Radio-Frequency and Microwave Techniques for Non-Invasive Measurement of Blood Glucose Levels. Diagnostics, 9, Article 6. https://doi.org/10.3390/diagnostics9010006 |