|
一种考虑木材拉压不等强的非线性统一本构模型及试验验证
|
Abstract:
木材作为一种天然的非均质材料,在荷载作用下同一纹理方向会表现出拉、压性能不对称的现象。为了更好地描述拉压性能不同的木材非线性力学行为,在一种用于描述木材受压的双参数本构模型的基础之上,通过引入Drucker-Prager塑性理论的静水压概念,建立了能够描述拉压性能不同的木材非线性统一本构模型。实验验证结果表明:模型描述的应力–应变曲线与实验结果吻合较好,运用本文中所建立的本构模型能够很好地描述木材在载荷作用下的非线性力学行为,而且考虑了木材同一纹理方向拉伸和压缩性能的差异。
As a natural heterogeneous material, wood exhibits asymmetric tensile and compressive properties in the same texture direction under load. In order to better describe the nonlinear mechanical behavior of wood with different tensile and compressive properties, based on a two parameter constitutive model used to describe wood under compression, a nonlinear unified constitutive model of wood that can describe different tensile and compressive properties was established by introducing the concept of hydrostatic pressure from Drucker Prager plasticity theory. The experimental verification results show that the stress-strain curve described by the model is in good agreement with the experimental results. The constitutive model established in this paper can well describe the nonlinear mechanical behavior of wood under load, and consider the differences in tensile and compressive properties of wood in the same texture direction.
[1] | 田大方, 张丹, 毕迎春. 传统木构架建筑的演变历程及其文化渊源[J]. 哈尔滨工业大学学报(社会科学版), 2010, 12(5): 6-14. |
[2] | 许新桥, 向琴, 王丽, 等. 黔东南苗族传统木结构民居现状与展望[J]. 林产工业, 2015, 42(4): 51-53. |
[3] | 张广平, 孙铭阳. 多高层木结构建筑空间设计分析——以寒地多高层木结构建筑为例[J]. 吉林建筑大学学报, 2021, 38(1): 58-62. |
[4] | 何敏娟, 孙晓峰, 李征. 多高层木结构抗震性能研究与设计方法综述[J]. 建筑结构, 2020, 50(5): 1-6. |
[5] | 阙泽利, 李哲瑞, 王菲彬, 等. 中高层木结构用正交胶合木(CLT)在欧洲的研究与发展现状[J]. 建筑结构, 2017, 47(2): 75-80+27. |
[6] | 赵冉, 张锐, 胡棚, 等. 木质桥梁2020年度研究进展[J]. 土木与环境工程学报, 2021, 43(S1): 315-320. |
[7] | 刘永健, 傅梅珍, 刘士林, 等. 现代木结构桥梁及其结构形式[J]. 建筑科学与工程学报, 2013, 30(1): 83-91. |
[8] | Yoshihara, H. (2009) Prediction of the Off-Axis Stress-Strain Relation of Wood under Compression Loading. European Journal of Wood and Wood Products, 67, 183-188. https://doi.org/10.1007/s00107-009-0320-6 |
[9] | 杨娜, 张雷, 秦术杰. 一种描述木材受压的非线性本构模型及试验验证[J]. 土木工程学报, 2017, 50(4): 80-88. |
[10] | Sun, C.T. and Chen, J.L. (1989) A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composites. Journal of Composite Materials, 23, 1009-1020. https://doi.org/10.1177/002199838902301004 |
[11] | Oudjene, M. and Khelifa, M. (2009) Elasto-Plastic Constitutive Law for Wood Behaviour under Compressive Loadings. Construction and Building Materials, 23, 3359-3366. https://doi.org/10.1016/j.conbuildmat.2009.06.034 |
[12] | de Borst, K., Jenkel, C., Montero, C., Colmars, J., Gril, J., Kaliske, M., et al. (2013) Mechanical Characterization of Wood: An Integrative Approach Ranging from Nanoscale to Structure. Computers & Structures, 127, 53-67. https://doi.org/10.1016/j.compstruc.2012.11.019 |
[13] | Xu, B.H., Bouchaïr, A., Taazount, M. and Vega, E.J. (2009) Numerical and Experimental Analyses of Multiple-Dowel Steel-to-Timber Joints in Tension Perpendicular to Grain. Engineering Structures, 31, 2357-2367. https://doi.org/10.1016/j.engstruct.2009.05.013 |
[14] | Rodney, H. (1948) A Theory of the Yielding and Plastic Flow of Anisotropic Metals. Mathematical and Physical Sciences, 193, 281-297. |
[15] | Hoffman, O. (1967) The Brittle Strength of Orthotropic Materials. Journal of Composite Materials, 1, 200-206. https://doi.org/10.1177/002199836700100210 |
[16] | 陈志勇, 祝恩淳, 潘景龙. 复杂应力状态下木材力学性能的数值模拟[J]. 计算力学学报, 2011, 28(4): 629-634+640. |
[17] | 张慎, 陈州, 李霆, 等. 基于ABAQUS的木材本构模型及试验验证[J/OL]. 工程力学: 1-15. https://link.cnki.net/urlid/11.2595.O3.20230327.0919.004, 2024-06-01. |
[18] | Drucker, D.C. and Prager, W. (1952) Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied Mathematics, 10, 157-165. https://doi.org/10.1090/qam/48291 |
[19] | GB/T50329-2012. 木结构试验方法标准[S]. 北京: 中国标准出版社, 2012. |
[20] | Yoshihara, H. and Ohta, M. (2000) Estimation of the Shear Strength of Wood by Uniaxial-Tension Tests of Off-Axis Specimens. Journal of Wood Science, 46, 159-163. https://doi.org/10.1007/bf00777364 |