|
基于层次分析法的乌鲁木齐地区卫生统计数据质量评价
|
Abstract:
目的:基于乌鲁木齐地区卫生统计数据质量评价指标,提供客观的参考指标,根据要素所占权重找出影响因素,提出问题改进措施,从而提高辖区卫生统计数据质量。方法:采取问卷调查并结合德尔菲专家咨询法确定各指标要素,运用层次分析法将影响卫生统计数据质量的问题要素进行分层,利用Yaahp软件计算各要素在卫生统计数据质量中的权重,通过权重占比找到主要问题。结果:反馈的数据总结为23个不同维度的影响因素,其中数据审核不到位、统计人员培训不到位和未对现场进行核查,缺乏问题发现渠道占比最大,分别为0.2012、0.1827和0.1535,均超过了0.15,其余要素在权重分析中少于0.15,为一般重要问题。结论:层次分析法能够更直观地找出卫生数据统计质量中最重要的因素;应从加强人员系统培训、确保数据审核和完善统计数据现场核查制度方面着手提高乌鲁木齐地区卫生统计数据质量。
Objective: Based on the quality evaluation indicators of health statistics data in Urumqi, objective reference indicators were provided, influencing factors were identified according to the weight of factors, and improvement measures were put forward to improve the quality of health statistics data in the district. Methods: A questionnaire survey combined with Delphi expert consultation method was used to determine each index element, AHP was used to stratify the problem elements affecting the quality of health statistics data, and Yaahp software was used to calculate the weight of each element in the quality of health statistics data, and the main problems were found through the weight proportion. Results: The feedback data were summarized into 23 influencing factors with different dimensions, among which, inadequate data review, inadequate training of statisticians and lack of verification of the site and lack of channels for problem identification accounted for the largest proportion, which were 0.2012, 0.1827 and 0.1535 respectively, all exceeding 0.15, and the rest elements were less than 0.15 in the weight analysis, which was a general important problem. Conclusion: AHP can find out the most important factors in the statistical quality of health data more directly. The quality of health statistics data in Urumqi should be improved by strengthening personnel training, ensuring data review and perfecting the on-site verification system of statistics.
[1] | 李瑞青. 大数据背景下统计数据质量控制方法研究[J]. 中文科技期刊数据库(全文版)经济管理, 2023(3): 4-7. |
[2] | 应桂英, 段占祺, 王敏. 卫生统计数据质量影响因素的探讨[J]. 中国卫生信息管理杂志, 2013, 4(4): 345-356. |
[3] | 张伟中. 如何提高卫生统计数据质量[J]. 中外医疗, 2008, 27(25): 163. |
[4] | 张岩岩, 刘英华, 梁士平. 基层公共卫生统计数据质量改进研究[J]. 统计与管理, 2022, 37(7): 122-128. |
[5] | 郭彤, 张祥, 贾瑞涛. 多重水质评价方法在地下水水质评价中的对比研究——以北京市朝阳区为例[J]. 环境工程技术学报, 2022, 12(6): 2020-2026. |
[6] | 陈勃昊, 薛城, 任俊, 殷小雅, 朱莹, 汤表倩, 王书梅. 基于德尔菲法的公共卫生事件中家庭服务需求指标体系构建[J]. 复旦学报(医学版), 2022, 49(1): 60-65+72. |
[7] | 赵晓芳. 提高医疗统计数据质量的对策研究[J]. 内蒙古统计, 2019(1): 59-60. |
[8] | 闫红. 卫生统计在现代医院管理中的地位与作用[J]. 办公室业务, 2021(12): 81+125. |
[9] | 董黎. 精神卫生中心卫生统计数据质量影响因素分析[J]. 中国医药科学, 2019, 9(2): 248-250. |
[10] | 刘婧. 影响基层统计数据质量的因素与应对策略[J]. 内蒙古统计, 2021(3): 49-50. |
[11] | 张耀光, 吴士勇, 李宏田. 卫生健康统计数据治理: 框架与内容[J]. 中国卫生信息管理杂志, 2022, 19(2): 153-158+164. |