|
Bioprocess 2024
生物气溶胶采样技术及设备研究
|
Abstract:
自然界空气中的微生物对人类生活和健康有着广泛影响。2003年暴发的重症急性呼吸综合症(SARS)、2009年的H1N1、2013年在我国首次发现的H7N9以及2019年爆发的新冠肺炎疫情使得全世界开始更加关注空气传染性疾病的传播。在多种疾病的传播方式中,空气传播具有传播途径易实现、传播广泛、发病率高等特点,而其中的生物气溶胶传播更是因其在空气颗粒物中所占比例小,可通过呼吸道、皮肤和消化道进入人体,引起感染、过敏性疾病和中毒等特点更加难以预防。所以对空气中病原体的实时监测和预警成为控制疫情传播的关键。本文主要总结了国内外关于微生物气溶胶采样技术及设备研究进展,尤其是在微生物气溶胶粒度分离与浓缩采样技术方面,结合研究现状,提出改进措施。
Microorganisms in the air of nature have a wide range of effects on human life and health. The outbreak of severe acute respiratory syndrome (SARS) in 2003, H1N1 in 2009, the first discovery of H7N9 in China in 2013, and the sudden outbreak of COVID-19 this year have raised global concerns about the transmission of air infectious diseases. Among the transmission modes of various diseases, airborne transmission is characterized by easy realization of transmission routes, wide range of transmission, and high incidence rate. Among them, the biological aerosol transmission is even more difficult to prevent due to its small proportion in air particles, which can enter the human body through the respiratory tract, skin, and digestive tract, causing infection, allergic diseases, and poisoning. Therefore, the real-time monitoring and early warning of pathogens in the air become the key to controlling the spread of the epidemic. This paper summarizes the research progress of biological aerosol sampling technology and equipment in domestic and overseas, especially in the aspect of particle separation and concentration sampling technology of biological aerosol. Combined with the research status, the improvement measures and development advantages are proposed.
[1] | Haas, D., Galler, H., Luxner, J., Zarfel, G., Buzina, W., Friedl, H., et al. (2013) The Concentrations of Culturable Microorganisms in Relation to Particulate Matter in Urban Air. Atmospheric Environment, 65, 215-222. https://doi.org/10.1016/j.atmosenv.2012.10.031 |
[2] | 程培青, 王蕴, 刘仙娜. 大气微生物污染分布研究及防治对策[J]. 中国环境管理, 2003(S1): 58-60. |
[3] | 杨柏林, 王晓禹, 李学文, 姬祥, 邹慧云, 迟小惠, 韩辉. 微生物气溶胶的采集方法及研究进展[J]. 中国消毒学杂志, 2017, 34(12): 1174-1177. |
[4] | 郭雅蓉, 廖春蓉, 刘玉梅. 室内空气微生物不同釆样方法的检测分析[J]. 疾病预防控制通报, 2014, 29(4): 75-76. |
[5] | 李涛. 空气微生物采样及发展趋势[J]. 中国卫生检验杂志, 2003, 13(5): 538-539. |
[6] | Yao, M. and Mainelis, G. (2006) Effect of Physical and Biological Parameters on Enumeration of Bioaerosols by Portable Microbial Impactors. Journal of Aerosol Science, 37, 1467-1483. https://doi.org/10.1016/j.jaerosci.2006.06.005 |
[7] | Burge, H. (1995) Bioaerosols. Lewis Publishers, 7. |
[8] | 刘洋, 王木根, 谢珊珊, 金晓敏, 曹巧玲, 田葆萍. 空气中微生物气溶胶采样技术研究进展[J]. 职业与健康, 2017, 33(5): 713-716. |
[9] | Krames, J. and Büttner, H. (1994) The Cyclone Scrubber—A High Efficiency Wet Separator. Chemical Engineering & Technology, 17, 73-80. https://doi.org/10.1002/ceat.270170202 |
[10] | Mainelis, G. and Tabayoyong, M. (2010) The Effect of Sampling Time on the Overall Performance of Portable Microbial Impactors. Aerosol Science and Technology, 44, 75-82. https://doi.org/10.1080/02786820903390372 |
[11] | Han, T. and Mainelis, G. (2012) Investigation of Inherent and Latent Internal Losses in Liquid-Based Bioaerosol Samplers. Journal of Aerosol Science, 45, 58-68. https://doi.org/10.1016/j.jaerosci.2011.11.001 |
[12] | 于玺华. 现代空气微生物学及采检鉴技术[M]. 北京: 军事医学科学出版社, 1998. |
[13] | 杨文慧, 温占波, 于龙, 等. 应用气溶胶发生法评价空气微生物采样器采样效率[J]. 中国消毒学杂志, 2009, 26(3): 245-248. |
[14] | 陈岚, 车红, 任丽丽, 等. 用安德森空气生物采样器采集病毒气溶胶的研究[J]. 中国医药生物技术, 2010, 5(5): 342-347. |
[15] | Lohmann, U. and Lesins, G. (2002) Stronger Constraints on the Anthropogenic Indirect Aerosol Effect. Science, 298, 1012-1015. https://doi.org/10.1126/science.1075405 |
[16] | 黄宪果. 气溶胶分粒度取样技术研究[J]. 中国核科技报告, 2008(2): 126-132. |
[17] | 王彦杰, 李琳, 许光素, 刘俊新, 韩云平. 微生物气溶胶采集技术的特点及应用[J]. 微生物学通报, 2017, 44(3): 701-709. |
[18] | 陈烈贤, 周淑玉. 空气微生物采样器的进展[J]. 卫生研究, 1994(S1): 138-144. |
[19] | 张惠力, 周明浩, 甄世祺, 等. 静电场采样装置对室内空气中过敏原采集效率的研究[J]. 环境监测管理与技术, 2009, 21(2): 57-59. |