|
单细胞RNA测序在自身免疫性疾病中的研究进展
|
Abstract:
单细胞RNA测序(scRNA-seq)是一种新的大规模、高通量技术,其允许在单个细胞的分辨率下分析整个转录组。自身免疫性疾病是确切病因和发病机制仍然未知的一组疾病,深入研究自身免疫性疾病发病机制的细胞和分子机制,确定新的治疗靶点,可以通过使用单细胞转录组测序技术来实现。本文基于最近发表的体外、体内和临床研究结果,综述了scRNA-seq在研究不同自身免疫性疾病中的应用。
Single-cell RNA sequencing (scRNA-seq) is a new large-scale, high-throughput technique that allows the entire transcriptome to be analyzed at the resolution of a single cell. Autoimmune diseases are a group of diseases whose exact etiology and pathogenesis are still unknown, and in-depth study of the cellular and molecular mechanisms of autoimmune disease pathogenesis and identification of new therapeutic targets can be achieved through the use of single-cell transcriptome sequencing technology. Based on the results of recently published in vitro, in vivo, and clinical studies, this article reviews the application of scRNA-seq in the study of different autoimmune diseases.
[1] | Kuret, T., Sodin-Šemrl, S., Leskošek, B. and Ferk, P. (2022) Single Cell RNA Sequencing in Autoimmune Inflammatory Rheumatic Diseases: Current Applications, Challenges and a Step toward Precision Medicine. Frontiers in Medicine, 8, Article ID: 822804. https://doi.org/10.3389/fmed.2021.822804 |
[2] | Jovic, D., Liang, X., Zeng, H., Lin, L., Xu, F. and Luo, Y. (2022) Single‐Cell RNA Sequencing Technologies and Applications: A Brief Overview. Clinical and Translational Medicine, 12, e694. https://doi.org/10.1002/ctm2.694 |
[3] | Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., et al. (2009) mRNA-seq Whole-Transcriptome Analysis of a Single Cell. Nature Methods, 6, 377-382. https://doi.org/10.1038/nmeth.1315 |
[4] | Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., et al. (2017) Comparative Analysis of Single-Cell RNA Sequencing Methods. Molecular Cell, 65, 631-643.e4. https://doi.org/10.1016/j.molcel.2017.01.023 |
[5] | Zeb, Q., Wang, C., Shafiq, S. and Liu, L. (2019) An Overview of Single-Cell Isolation Techniques. In: Barh, D. and Azevedo, V., Eds., Single-Cell Omics, Elsevier, Amsterdam, 101-135. https://doi.org/10.1016/b978-0-12-814919-5.00006-3 |
[6] | Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C. and Teichmann, S.A. (2015) The Technology and Biology of Single-Cell RNA Sequencing. Molecular Cell, 58, 610-620. https://doi.org/10.1016/j.molcel.2015.04.005 |
[7] | He, J., Shen, J., Luo, W., Han, Z., Xie, F., Pang, T., et al. (2022) Research Progress on Application of Single-Cell TCR/BCR Sequencing Technology to the Tumor Immune Microenvironment, Autoimmune Diseases, and Infectious Diseases. Frontiers in Immunology, 13, Article ID: 969808. https://doi.org/10.3389/fimmu.2022.969808 |
[8] | Zhao, M., Jiang, J., Zhao, M., Chang, C., Wu, H. and Lu, Q. (2020) The Application of Single-Cell RNA Sequencing in Studies of Autoimmune Diseases: A Comprehensive Review. Clinical Reviews in Allergy & Immunology, 60, 68-86. https://doi.org/10.1007/s12016-020-08813-6 |
[9] | Firestein, G.S. and McInnes, I.B. (2017) Immunopathogenesis of Rheumatoid Arthritis. Immunity, 46, 183-196. https://doi.org/10.1016/j.immuni.2017.02.006 |
[10] | (2018) Rheumatoid Arthritis. Nature Reviews Disease Primers, 4, Article No. 18002. |
[11] | Smolen, J.S., Aletaha, D. and McInnes, I.B. (2016) Rheumatoid Arthritis. The Lancet, 388, 2023-2038. https://doi.org/10.1016/s0140-6736(16)30173-8 |
[12] | Mizoguchi, F., Slowikowski, K., Wei, K., et al. (2018) Functionally Distinct Disease-Associated Fibroblast Subsets in Rheumatoid Arthritis. Nature Communications, 9, Article No. 789. |
[13] | Cai, S., Ming, B., Ye, C., Lin, S., Hu, P., Tang, J., et al. (2019) Similar Transition Processes in Synovial Fibroblasts from Rheumatoid Arthritis and Osteoarthritis: A Single-Cell Study. Journal of Immunology Research, 2019, Article ID: 4080735. https://doi.org/10.1155/2019/4080735 |
[14] | Kuo, D., Ding, J., Cohn, I.S., Zhang, F., Wei, K., Rao, D.A., et al. (2019) HBEGF+ Macrophages in Rheumatoid Arthritis Induce Fibroblast Invasiveness. Science Translational Medicine, 11, eaau8587. https://doi.org/10.1126/scitranslmed.aau8587 |
[15] | Nikiphorou, E., Sjöwall, C., Hannonen, P., Rannio, T. and Sokka, T. (2016) Long-Term Outcomes of Destructive Seronegative (Rheumatoid) Arthritis—Description of Four Clinical Cases. BMC Musculoskeletal Disorders, 17, Article No. 246. https://doi.org/10.1186/s12891-016-1067-y |
[16] | Kelkka, T., Savola, P., Bhattacharya, D., Huuhtanen, J., Lönnberg, T., Kankainen, M., et al. (2021) Corrigendum: Adult-Onset Anti-Citrullinated Peptide Antibody-Negative Destructive Rheumatoid Arthritis Is Characterized by a Disease-Specific CD8+ T Lymphocyte Signature. Frontiers in Immunology, 12, Article ID: 710831. https://doi.org/10.3389/fimmu.2021.710831 |
[17] | Der, E., Suryawanshi, H., Morozov, P., Kustagi, M., Goilav, B., Ranabothu, S., et al. (2019) Author Correction: Tubular Cell and Keratinocyte Single-Cell Transcriptomics Applied to Lupus Nephritis Reveal Type I IFN and Fibrosis Relevant Pathways. Nature Immunology, 20, Article No. 1556. https://doi.org/10.1038/s41590-019-0529-4 |
[18] | Arazi, A., Rao, D.A., Berthier, C.C., et al. (2019) The Immune Cell Landscape in Kidneys of Patients with Lupus Nephritis. Nature Immunology, 20, 1404-1405. |
[19] | Zhang, T., Li, H., Vanarsa, K., Gidley, G., Mok, C.C., Petri, M., et al. (2020) Association of Urine sCD163 with Proliferative Lupus Nephritis, Fibrinoid Necrosis, Cellular Crescents and Intrarenal M2 Macrophages. Frontiers in Immunology, 11, Article No. 671. https://doi.org/10.3389/fimmu.2020.00671 |
[20] | Nehar-Belaid, D., Hong, S., Marches, R., Chen, G., Bolisetty, M., Baisch, J., et al. (2020) Mapping Systemic Lupus Erythematosus Heterogeneity at the Single-Cell Level. Nature Immunology, 21, 1094-1106. https://doi.org/10.1038/s41590-020-0743-0 |
[21] | 王晨峰, 卢旭华. 基于生物信息学分析筛选强直性脊柱炎的关键诊断标志物[J]. 海军军医大学学报, 2022, 43(8): 888-894. |
[22] | Xu, H., Yu, H., Liu, L., Wu, H., Zhang, C., Cai, W., et al. (2021) Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Peripheral Mononuclear Cells in Patients with Ankylosing Spondylitis. Frontiers in Immunology, 12, Article ID: 760381. https://doi.org/10.3389/fimmu.2021.760381 |
[23] | Ren, C., Li, M., Zheng, Y., Cai, B., Du, W., Zhang, H., et al. (2022) Single‐Cell RNA‐seq Reveals Altered NK Cell Subsets and Reduced Levels of Cytotoxic Molecules in Patients with Ankylosing Spondylitis. Journal of Cellular and Molecular Medicine, 26, 1071-1082. https://doi.org/10.1111/jcmm.17159 |
[24] | Asano, Y. (2017) Systemic Sclerosis. The Journal of Dermatology, 45, 128-138. https://doi.org/10.1111/1346-8138.14153 |
[25] | Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcão, A., Xiao, L., et al. (2016) Oligodendrocyte Heterogeneity in the Mouse Juvenile and Adult Central Nervous System. Science, 352, 1326-1329. https://doi.org/10.1126/science.aaf6463 |
[26] | Hammond, T.R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., et al. (2019) Single-Cell RNA Sequencing of Microglia Throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 50, 253-271.e6. https://doi.org/10.1016/j.immuni.2018.11.004 |
[27] | Henkin, R.I. (2018) Primary Sjögren’s Syndrome. The New England Journal of Medicine, 379, 97. |
[28] | Qin, B., Wang, J., Yang, Z., Yang, M., Ma, N., Huang, F., et al. (2014) Epidemiology of Primary Sjögren’s Syndrome: A Systematic Review and Meta-Analysis. Annals of the Rheumatic Diseases, 74, 1983-1989. https://doi.org/10.1136/annrheumdis-2014-205375 |
[29] | Hong, X., Meng, S., Tang, D., Wang, T., Ding, L., Yu, H., et al. (2021) Single-Cell RNA Sequencing Reveals the Expansion of Cytotoxic CD4+ T Lymphocytes and a Landscape of Immune Cells in Primary Sjögren’s Syndrome. Frontiers in Immunology, 11, Article ID: 594658. https://doi.org/10.3389/fimmu.2020.594658 |