Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.
References
[1]
Tittonell, P. and Giller, K.E. (2013) When Yield Gaps Are Poverty Traps: The Paradigm of Ecological Intensification in African Smallholder Agriculture. Field Crops Research, 143, 76-90. https://doi.org/10.1016/j.fcr.2012.10.007
[2]
Jayne, T.S., Mather, D. and Mghenyi, E. (2010) Principal Challenges Confronting Smallholder Agriculture in Sub-Saharan Africa. World Development, 38, 1384-1398. https://doi.org/10.1016/j.worlddev.2010.06.002
[3]
Fritz, S., Massart, M., Savin, I., Gallego, J. and Rembold, F. (2008) The Use of MODIS Data to Derive Acreage Estimations for Larger Fields: A Case Study in the South-Western Rostov Region of Russia. International Journal of Applied Earth Observation and Geoinformation, 10, 453-466. https://doi.org/10.1016/j.jag.2007.12.004
[4]
FAO. (2017) The Future of Food and Agriculture: Trends and Challenges. Rome.
[5]
Tsiligirides, T.A. (1998) Remote Sensing as a Tool for Agricultural Statistics: A Case Study of Area Frame Sampling Methodology in Hellas. Computers and Electronics in Agriculture, 20, 45-77. https://doi.org/10.1016/s0168-1699(98)00011-8
[6]
Kumar, D.A., Srikanth, P., Neelima, T.L., Devi, M.U., Suresh, K. and Murthy, C.S. (2021) Monitoring of Spectral Signatures of Maize Crop Using Temporal SAR and Optical Remote Sensing Data. International Journal of Bio-Resource and Stress Management, 12, 745-750. https://doi.org/10.23910/1.2021.2482
[7]
Atzberger, C. (2013) Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sensing, 5, 949-981. https://doi.org/10.3390/rs5020949
[8]
Rembold, F., Meroni, M., Urbano, F., Royer, A., Atzberger, C., Lemoine, G., et al. (2015) Remote Sensing Time Series Analysis for Crop Monitoring with the SPIRITS Software: New Functionalities and Use Examples. Frontiers in Environmental Science, 3, Article 46. https://doi.org/10.3389/fenvs.2015.00046
[9]
Todoroff, P. and Kemp, J. (2016) Contribution of Remote Sensing to Crop Monitoring in Tropical Zones. In: Baghdadi, N. and Zribi, M., Eds., Land Surface Remote Sensing in Agriculture and Forest, Elsevier, 179-220. https://doi.org/10.1016/b978-1-78548-103-1.50005-4
[10]
Ennouri, K. and Kallel, A. (2019) Remote Sensing: An Advanced Technique for Crop Condition Assessment. Mathematical Problems in Engineering, 2019, Article 9404565. https://doi.org/10.1155/2019/9404565
[11]
Chen, Z., Li, S., Ren, J., Gong, P., Zhang, M., Wang, L., et al. (2008) Monitoring and Management of Agriculture with Remote Sensing. In: Liang, S., Ed., Advances in Land Remote Sensing, Springer, 397-421. https://doi.org/10.1007/978-1-4020-6450-0_15
[12]
Rao, N.R., Garg, P.K. and Ghosh, S.K. (2007) Development of an Agricultural Crops Spectral Library and Classification of Crops at Cultivar Level Using Hyperspectral Data. Precision Agriculture, 8, 173-185. https://doi.org/10.1007/s11119-007-9037-x
[13]
Galvão, L.S., Formaggio, A.R. and Tisot, D.A. (2005) Discrimination of Sugarcane Varieties in Southeastern Brazil with EO-1 Hyperion Data. Remote Sensing of Environment, 94, 523-534. https://doi.org/10.1016/j.rse.2004.11.012
[14]
Thenkabail, P.S., Gumma, M.K., Teluguntla, P. and Mohammed, I.A. (2014) Hyperspectral Remote Sensing of Vegetation and Agricultural Crops. Photogrammetric Engineering and Remote Sensing, 80, 697-709.
[15]
Makantasis, K., Karantzalos, K., Doulamis, A. and Doulamis, N. (2015) Deep Supervised Learning for Hyperspectral Data Classification through Convolutional Neural Networks. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 26-31 July 2015, 4959-4962. https://doi.org/10.1109/igarss.2015.7326945
[16]
Pádua, L., Marques, P., Hruška, J., Adão, T., Peres, E., Morais, R., et al. (2018) Multi-temporal Vineyard Monitoring through UAV-Based RGB Imagery. Remote Sensing, 10, Article 1907. https://doi.org/10.3390/rs10121907
[17]
Wei, L., Wang, K., Lu, Q., Liang, Y., Li, H., Wang, Z., et al. (2021) Crops Fine Classification in Airborne Hyperspectral Imagery Based on Multi-Feature Fusion and Deep Learning. Remote Sensing, 13, Article 2917. https://doi.org/10.3390/rs13152917
[18]
Mariotto, I., Thenkabail, P. and Aneece, I. (2020) Global Hyperspectral Imaging Spec-tral-Library of Agricultural Crops for Central Asia. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/Community/GHISA/GHISACASIA.001
[19]
Krishna Mohan, B. and Porwal, A. (2015) Hyperspectral Image Processing and Analysis. Current Science, 108, 833-841.
[20]
Roumenina, E., Lachezar Filchev, L., Vassilev, V. and Dimitrov, P. (2012) Comparative Analysis of Crop Maps for Selected Test Areas on the Territory of Bulgaria and Romania Using Simulated Proba-V and Spot Vegetation Data. European Association of Remote Sensing LaboratoriesEARSeL eProceedings, 11, 155-160.
[21]
Dusseux, P., Vertès, F., Corpetti, T., Corgne, S. and Hubert-Moy, L. (2014) Agricultural Practices in Grasslands Detected by Spatial Remote Sensing. Environmental Monitoring and Assessment, 186, 8249-8265. https://doi.org/10.1007/s10661-014-4001-5
[22]
Segarra, J., Buchaillot, M.L., Araus, J.L. and Kefauver, S.C. (2020) Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy, 10, Article 641. https://doi.org/10.3390/agronomy10050641
[23]
Forkuor, G., Dimobe, K., Serme, I. and Tondoh, J.E. (2017) Landsat-8 vs. Sentinel-2: Examining the Added Value of Sentinel-2’s Red-Edge Bands to Land-Use and Land-Cover Mapping in Burkina Faso. GIScience & Remote Sensing, 55, 331-354. https://doi.org/10.1080/15481603.2017.1370169
[24]
Rembold, F., Atzberger, C., Savin, I. and Rojas, O. (2013) Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sensing, 5, 1704-1733. https://doi.org/10.3390/rs5041704
[25]
Palchowdhuri, Y., Valcarce-Diñeiro, R., King, P. and Sanabria-Soto, M. (2018) Classification of Multi-Temporal Spectral Indices for Crop Type Mapping: A Case Study in Coalville, UK. The Journal of Agricultural Science, 156, 24-36. https://doi.org/10.1017/s0021859617000879
[26]
Samant, T.K. (2014) Evaluation of Growth and Yield Parameters of Green Gram (Vigna radiata L.). Agriculture Update, 9, 427-430. https://doi.org/10.15740/has/au/9.3/427-430
[27]
Hargrave, B. (2006) Green Gram or Mung Beans (Vigna radiata). ECHO Development Notes no. 93.
[28]
Purseglove, J.W. (2003) Tropical Crops. Longman.
[29]
Hill, D.S. (1987) Agricultural Insect Pests of the Tropics and Their Control. Cam-bridge University Press.
[30]
Wambua, J.M., Ngigi, M. and Lutta, M. (2017) Yields of Green Grams and Pigeonpeas under Smallholder Conditions in Machakos County, Kenya. East African Agricultural and Forestry Journal, 82, 91-117. https://doi.org/10.1080/00128325.2017.1346903
[31]
Malik, A., Fayyaz-Ul-Hassan, A., Abdul Wahieed, A., Qadir, G. and Asghar, R. (2006) Interactive Effects of Irrigation and Phosphorus on Green Gram (Vigna radiata L.). Pakistan Journal of Botany, 38, 1119-1126.
[32]
Singh, R.B., Kumar, P. and Woodhead, T. (2002) Smallholder Farmers in India: Food Security and Agriculture Policy. RAP Publication, 20-27.
[33]
Mugo, J.W., Opijah, F.J., Ngaina, J., Karanja, F. and Mburu, M. (2020) Suitability of Green Gram Production in Kenya under Present and Future Climate Scenarios Using Bias-Corrected Cordex RCA4 Models. Agricultural Sciences, 11, 882-896. https://doi.org/10.4236/as.2020.1110057
[34]
Ogada, P. and Cigoja, D. (2017) Trends in Indigenous Crops Cultivation and Distribu-tion in Yatta Sub County, Kenya. International Journal of Scientific & Engineering Research, 8, 480-483.
[35]
Jiitzold, R. and Kutsch, H. (2000) Agro-Ecological Zones of the Tropics, with a Sample from Kenya. Der Tropenlandwirt-Journal of Agriculture in the Tropics and Subtropics, 83, 15-34.
[36]
Agesa, B., Onyango, C., Kathumo, V., Onwonga, R. and Karuku, G. (2019) Climate Change Effects on Crop Production in Kenya: Farmer Perceptions and Adaptation Strategies. African Journal of Food, Agriculture, Nutrition and Development, 19, 14010-14042. https://doi.org/10.18697/ajfand.84.blfb1017
[37]
Stafford, J.D., Reinecke, K.J., Kaminski, R.M. and Gerard, P.D. (2006) Multi-Stage Sampling for Large Scale Natural Resources Surveys: A Case Study of Rice and Waterfowl. Journal of Environmental Management, 78, 353-361. https://doi.org/10.1016/j.jenvman.2005.04.029
[38]
Cohen, L., Manion, L. and Morrison, K. (2017) Research Methods in Education, Routledge. https://doi.org/10.4324/9781315456539
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. and Skakun, S. (2017) Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science, 5, Article 17. https://doi.org/10.3389/feart.2017.00017
[41]
Agilandeeswari, L., Prabukumar, M., Radhesyam, V., Phaneendra, K.L.N.B. and Farhan, A. (2022) Crop Classification for Agricultural Applications in Hyperspectral Remote Sensing Images. Applied Sciences, 12, Article 1670. https://doi.org/10.3390/app12031670
[42]
Estévez, J., Vicent, J., Rivera-Caicedo, J.P., Morcillo-Pallarés, P., Vuolo, F., Sabater, N., et al. (2020) Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 289-304. https://doi.org/10.1016/j.isprsjprs.2020.07.004
[43]
Bruce, C.M. and Hilbert, D.W. (2004) Pre-Processing Methodology for Application to Landsat TM/ETM+ Imagery of the Wet Tropics. CSIRO Tropical Forest Research Centre and Rainforest CRC.
[44]
Krishnan, R., Ramachandran, R., Murali Mohan, A., Radhadevi, P.V., Patra, S.K. and Chandrakanth, R. (1998) Satellite Data Preprocessing—New Perspectives. 90-98. http://www.isprs.org/proceedings/XXXII/part1/90_XXXII-part1.pdf
[45]
USGS (2019) Landsat 8 (L8) Data Users Handbook. United States Geological Survey.
[46]
Chander, G., Markham, B.L. and Helder, D.L. (2009) Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sensing of Environment, 113, 893-903. https://doi.org/10.1016/j.rse.2009.01.007
[47]
Vishnu, S., Nidamanuri, R.R. and Bremananth, R. (2013) Spectral Material Mapping Using Hyperspectral Imagery: A Review of Spectral Matching and Library Search Methods. Geocarto International, 28, 171-190. https://doi.org/10.1080/10106049.2012.665498
[48]
Clevers, J.G.P.W. and Gitelson, A.A. (2013) Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation, 23, 344-351. https://doi.org/10.1016/j.jag.2012.10.008
[49]
Richards, J.A. and Jia, X. (2006) Remote Sensing Digital Image Analysis. Springer.
[50]
Hütt, C., Koppe, W., Miao, Y. and Bareth, G. (2016) Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images. Remote Sensing, 8, Article 684. https://doi.org/10.3390/rs8080684
[51]
Kavzoglu, T. and Reis, S. (2008) Performance Analysis of Maximum Likelihood and Artificial Neural Network Classifiers for Training Sets with Mixed Pixels. GIScience & Remote Sensing, 45, 330-342. https://doi.org/10.2747/1548-1603.45.3.330
[52]
Congalton, R.G. (1991) A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment, 37, 35-46. https://doi.org/10.1016/0034-4257(91)90048-b
[53]
Jensen, J. R. (2000) Remote Sensing of the Environment: An Earth Resource Perspective. Pearson Prentice Hall.
[54]
Castillejo-González, I.L., López-Granados, F., García-Ferrer, A., Peña-Barragán, J.M., Jurado-Expósito, M., de la Orden, M.S., et al. (2009) Object-and Pixel-Based Analysis for Mapping Crops and Their Agro-Environmental Associated Measures Using QuickBird Imagery. Computers and Electronics in Agriculture, 68, 207-215. https://doi.org/10.1016/j.compag.2009.06.004
[55]
Hong, G., Zhang, A., Zhou, F., Townley-Smith, L., Brisco, B. and Olthof, I. (2011) Crop-Type Identification Potential of Radarsat-2 and MODIS Images for the Canadian Prairies. Canadian Journal of Remote Sensing, 37, 45-54. https://doi.org/10.5589/m11-026
[56]
Immitzer, M., Vuolo, F. and Atzberger, C. (2016) First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8, Article 166. https://doi.org/10.3390/rs8030166
[57]
Masialeti, I., Egbert, S. and Wardlow, B.D. (2010) A Comparative Analysis of Phenological Curves for Major Crops in Kansas. GIScience & Remote Sensing, 47, 241-259. https://doi.org/10.2747/1548-1603.47.2.241
[58]
Panigrahy, S., Ray, S.S., Manjunath, K.R., Pandey, P.S., Sharma, S.K., Sood, A., et al. (2011) A Spatial Database of Cropping System and Its Characteristics to Aid Climate Change Impact Assessment Studies. Journal of the Indian Society of Remote Sensing, 39, 355-364. https://doi.org/10.1007/s12524-011-0093-3
[59]
Heupel, K., Spengler, D. and Itzerott, S. (2018) A Progressive Crop-Type Classification Using Multitemporal Remote Sensing Data and Phenological Information. PFG—Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 86, 53-69. https://doi.org/10.1007/s41064-018-0050-7
[60]
Arias, M., Campo-Bescós, M.Á. and Álvarez-Mozos, J. (2020) Crop Classification Based on Temporal Signatures of Sentinel-1 Observations over Navarre Province, Spain. Remote Sensing, 12, Article 278. https://doi.org/10.3390/rs12020278
[61]
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J., et al. (2017) Understanding the Temporal Behavior of Crops Using Sentinel-1 and Sentinel-2-Like Data for Agricultural Applications. Remote Sensing of Environment, 199, 415-426. https://doi.org/10.1016/j.rse.2017.07.015
[62]
Ouzemou, J., El Harti, A., Lhissou, R., El Moujahid, A., Bouch, N., El Ouazzani, R., et al. (2018) Crop Type Mapping from Pansharpened Landsat 8 NDVI Data: A Case of a Highly Fragmented and Intensive Agricultural System. Remote Sensing Applications: Society and Environment, 11, 94-103. https://doi.org/10.1016/j.rsase.2018.05.002
[63]
Teixeira Pinto, C., Jing, X. and Leigh, L. (2020) Evaluation Analysis of Landsat Level-1 and Level-2 Data Products Using in Situ Measurements. Remote Sensing, 12, Article 2597. https://doi.org/10.3390/rs12162597
[64]
Fang, H. and Liang, S. (2003) Retrieving Leaf Area Index with a Neural Network Method: Simulation and Validation. IEEE Transactions on Geoscience and Remote Sensing, 41, 2052-2062. https://doi.org/10.1109/tgrs.2003.813493
[65]
Estévez, J., Berger, K., Vicent, J., Rivera-Caicedo, J.P., Wocher, M. and Verrelst, J. (2021) Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow. Remote Sensing, 13, Article 1589. https://doi.org/10.3390/rs13081589
[66]
Schneider, A., Mertes, C.M. and Formaggio, A.R. (2017) Discriminating between Rice and Wheat Crops Using Landsat 8 OLI Data. International Journal of Remote Sensing, 38, 6046-6063.
[67]
Deguise, I.E., Lefebvre, D. and Blondel, P. (2020) Crop Mapping of Smallholder Farms Using Landsat 8 Data in Sub-Saharan Africa. Remote Sensing, 12, 957-968.
[68]
Zhong, L., Hu, L., Yu, L., Gong, P. and Biging, G.S. (2016) Automated Mapping of Soybean and Corn Using Phenology. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 151-164. https://doi.org/10.1016/j.isprsjprs.2016.05.014
[69]
Wu, W., Yu, Q., Peter, V.H., You, L., Yang, P. and Tang, H. (2014) How Could Agricultural Land Systems Contribute to Raise Food Production under Global Change? Journal of Integrative Agriculture, 13, 1432-1442. https://doi.org/10.1016/s2095-3119(14)60819-4
[70]
Yu, Q., Wu, W., Liu, Z., Verburg, P.H., Xia, T., Yang, P., et al. (2014) Interpretation of Climate Change and Agricultural Adaptations by Local Household Farmers: A Case Study at Bin County, Northeast China. Journal of Integrative Agriculture, 13, 1599-1608. https://doi.org/10.1016/s2095-3119(14)60805-4
[71]
Song, A., Choi, J., Kim, Y. and Kim, Y. (2015) Analysis of Appropriate Spectral Similarity Methods to Classify Target Species Using CASI Hyperspectral Images. 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Metro Manila, 24-28 October 2015, p. 3828.
[72]
Vajsová, B., Fasbender, D., Wirnhardt, C., Lemajic, S. and Devos, W. (2020) Assessing Spatial Limits of Sentinel-2 Data on Arable Crops in the Context of Checks by Monitoring. Remote Sensing, 12, Article 2195. https://doi.org/10.3390/rs12142195
[73]
Vinciková, H., Hais, M., Brom, J., Procházka, J. and Pecharová, E. (2010) Landscape Studies Use of Remote Sensing Methods in Studying Agricultural Landscapes—A Review. Journal of Landscape Studies, 3, 53-63.
[74]
Nellis, M.D., Price, K.P. and Rundquist, D. (2009) Remote Sensing of Cropland Agriculture. In: Warner, T.A., Nellis, M.D. and Foody, G.M., Eds., The SAGE Handbook of Remote Sensing, SAGE Publications, Inc., 368-380. https://doi.org/10.4135/9780857021052.n26
[75]
Hansen, J. (2004) Linking Dynamic Seasonal Climate Forecasts with Crop Simulation for Maize Yield Prediction in Semi-Arid Kenya. Agricultural and Forest Meteorology, 125, 143-157. https://doi.org/10.1016/j.agrformet.2004.02.006
[76]
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S. and Hostert, P. (2022) Mapping of Crop Types and Crop Sequences with Combined Time Series of Sentinel-1, Sentinel-2 and Landsat 8 Data for Germany. Remote Sensing of Environment, 269, Article 112831. https://doi.org/10.1016/j.rse.2021.112831
[77]
Crnojevic, V., Lugonja, P., Brkljac, B. and Brunet, B. (2014) Classification of Small Agricultural Fields Using Combined Landsat-8 and Rapideye Imagery: Case Study of Northern Serbia. Journal of Applied Remote Sensing, 8, Article 083512. https://doi.org/10.1117/1.jrs.8.083512
[78]
Mtibaa, S. and Irie, M. (2016) Land Cover Mapping in Cropland Dominated Area Using Information on Vegetation Phenology and Multi-Seasonal Landsat 8 Images. Euro-Mediterranean Journal for Environmental Integration, 1, Article No. 6. https://doi.org/10.1007/s41207-016-0006-5
[79]
Shi, X., Deng, Z., Ding, X. and Li, L. (2020) Land Cover Classification Combining Sentinel-1 and Landsat 8 Imagery Driven by Markov Random Field with Amendment Reliability Factors. EURASIP Journal on Wireless Communications and Networking, 2020, Article No. 87. https://doi.org/10.1186/s13638-020-01713-5
[80]
Ahady, A.B. and Kaplan, G. (2022) Classification Comparison of Landsat-8 and Sentinel-2 Data in Google Earth Engine, Study Case of the City of Kabul. International Journal of Engineering and Geosciences, 7, 24-31. https://doi.org/10.26833/ijeg.860077
[81]
Zhu, Z., Wang, S. and Woodcock, C.E. (2015) Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4-7, 8, and Sentinel 2 Images. Remote Sensing of Environment, 159, 269-277. https://doi.org/10.1016/j.rse.2014.12.014
[82]
Zhong, L., Hu, L. and Zhou, H. (2019) Deep Learning Based Multi-Temporal Crop Classification. Remote Sensing of Environment, 221, 430-443. https://doi.org/10.1016/j.rse.2018.11.032
[83]
Tariq, A., Yan, J., Gagnon, A.S., Khan, M.R. and Mumtaz, F. (2022) Mapping of Cropland, Cropping Pattern Patterns, and Crop Types by Combining Optical Remote Sensing Images with Decision Tree Classifier and Random Forest. Geo-Spatial Information Science, 26, 302-320. https://doi.org/10.1080/10095020.2022.2100287
[84]
Hueni, A., Nieke, J., Schopfer, J., Kneubühler, M. and Itten, K.I. (2009) The Spectral Database SPECCHIO for Improved Long-Term Usability and Data Sharing. Computers & Geosciences, 35, 557-565. https://doi.org/10.1016/j.cageo.2008.03.015
[85]
Hesping, M. (2020) Remote Sensing-Based Land Cover Classification and Change Detection Using Sentinel-2 Data and Forest Random Forest: A Case Study of Rusinga Island, Kenya. https://ep.liu.se/
[86]
Rao, N.R. (2008) RETRACTED ARTICLE: Development of a Crop‐Specific Spectral Library and Discrimination of Various Agricultural Crop Varieties Using Hyperspectral Imagery. International Journal of Remote Sensing, 29, 131-144. https://doi.org/10.1080/01431160701241779
[87]
Xie, Y., Sha, Z. and Yu, M. (2008) Remote Sensing Imagery in Vegetation Mapping: A Review. Journal of Plant Ecology, 1, 9-23. https://doi.org/10.1093/jpe/rtm005