全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

桁架结构振动控制技术与方法研究综述
Research Review on Vibration Control Technologies and Methods for Truss Structure

DOI: 10.12677/hjce.2024.138171, PP. 1583-1590

Keywords: 桁架结构,被动控制,主动控制,主被动一体化控制
Truss Structure
, Passive Control, Active Control, Integrated Active and Passive Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章全面综述了桁架结构振动控制技术,包括被动控制、主动控制及主被动一体化控制方法。被动控制技术利用耗能装置如调谐质量阻尼器和粘弹性材料,具有结构简单、可靠性高的特点。主动控制技术通过实时监测与反馈,实现对结构振动的精确控制,但成本较高。主被动一体化控制技术结合了主动控制的灵活性和被动控制的经济性,展现出良好的应用潜力。并分析了不同控制技术的特点,探讨了未来的发展方向,为桁架结构的振动控制提供了理论依据和实践指导。
The paper makes a comprehensive review of vibration control technologies for truss structure, including passive control, active control and integrated active and passive control. Passive control technology uses energy dissipation devices such as tuned mass dampers and viscoelastic materials, which have the characteristics of simple structure and high reliability. Active control technology can realize precise control of structural vibration through real-time monitoring and feedback, however, its drawback is high cost. The integrated active and passive control technology combines the flexibility of active control and the cost-effectiveness of passive control and shows good application potential. This paper also analyzes the characteristics of different control technologies and discusses the future development direction, which provides a theoretical basis and practical guidance for the vibration control of the truss structure.

References

[1]  Liang, L., Li, X., Yin, J., et al. (2019) Vibration Characteristics of Damping Pad Floating Slab on the Long-Span Steel Truss Cable-Stayed Bridge in Urban Rail Transit. Engineering Structures, 191, 92-103.
https://doi.org/10.1016/j.engstruct.2019.04.032
[2]  王浩, 刘海红, 陶天友, 等. TMD对列车作用下大跨钢桁架桥的振动控制研究[J]. 振动工程学报, 2014, 27(3): 385-391.
[3]  Chen, Z., Chen, Z.H., Li, G.J., et al. (2022) Dynamic Response Analysis and Vibration Reduction of Steel Truss Corridor Pedestrian Bridge under Pedestrian Load. Frontiers in Materials, 9, Article ID: 839265.
https://doi.org/10.3389/fmats.2022.839265
[4]  徐培蓁, 尹学军, 高星亮, 等. TMD振动控制在登机廊桥上的应用研究[J]. 工程力学, 2012, 29(3): 192-198.
[5]  顾萍, 王淼, 吴定俊, 等. TMD抑制既有铁路钢桁梁桥横向振动研究[J]. 铁道学报, 2005, 2(27): 85-89.
[6]  Debnath, N., Deb, S. and Dutta, A. (2016) Multi-Modal Vibration Control of Truss Bridges with Tuned Mass Dampers under General Loading. Journal of Vibration and Control, 22, 4121-4140.
https://doi.org/10.1177/1077546315571172
[7]  杨双双, 王建平, 赵志波, 等. 基于调谐质量阻尼器的装配式钢桁桥振动控制研究[J]. 兵器装备工程学报, 2017, 38(8): 50-53.
[8]  胡方健. 多变空间连续桁架人行景观桥振动控制研究[J]. 城市道桥与防洪, 2022(5): 93-96.
[9]  Wang, H., Tao, T., Cheng, H., et al. (2014) Simulation Study on Train-Induced Vibration Control of a Long-Span Steel Truss Girder Bridge by Tuned Mass Dampers. Mathematical Problems in Engineering, 2014, Article ID: 506578.
https://doi.org/10.1155/2014/506578
[10]  Pipinato, A. (2019) Extending the Fatigue Life of Steel Truss Bridges with Tuned Mass Damper Systems. Advances in Civil Engineering, 2019, Article ID: 5409013.
https://doi.org/10.1155/2019/5409013
[11]  李东旭, 刘望, 蒋建平. 空间桁架结构采用黏弹性阻尼的振动控制技术[J]. 噪声与振动控制, 2011, 31(4): 46-50.
[12]  李星. 大跨度屋盖管桁架结构在地震作用下的振动控制[D]: [硕士学位论文]. 成都: 西南交通大学, 2008.
[13]  李洪发. 大型挠性空间桁架的力学性能分析及被动振动控制研究[D]: [硕士学位论文]. 长沙: 国防科学技术大学, 2007.
[14]  韩庆华, 陶轶洋, 刘铭劼. 大跨立体管桁架三维振动控制分析[J]. 地震工程与工程振动, 2019, 39(5): 52-66.
[15]  郑凯, 陈杰, 杨义勇. 压电自适应桁架结构智能振动控制[J]. 控制理论与应用, 2010, 27(7): 943-947.
[16]  司洪伟. 大挠性航天桁架结构动力学建模及其主动模糊控制研究[D]: [博士学位论文]. 长沙: 国防科学技术大学, 2006.
[17]  曹玉岩, 付世欣, 王鸣浩. 压电智能桁架结构的建模与最优振动控制[J]. 压电与声光, 2014, 36(4): 523-526.
[18]  罗波, 李伟鹏, 黄海. 基于Stewart平台的大柔性空间桁架结构振动控制[J]. 振动与冲击, 2012, 31(23): 148-153.
[19]  陈文英, 褚福磊, 阎绍泽. 基于自适应遗传算法分步优化设计智能桁架结构自抗扰振动控制器[J]. 机械工程学报, 2010, 46(7): 74-81.
[20]  许建国, 邹康, 张静静, 等. 空间桁架结构的优化配置及振动控制研究[J]. 计算机测量与控制, 2016, 24(3): 67-70.
[21]  曹玉岩, 王志臣, 付世欣, 等. 智能桁架结构最优振动控制与作动器优化配置[J]. 振动与冲击, 2015, 34(5): 26-32.
[22]  Wu, S. and Zhou, W.Y. (2023) Vibration Control for Large Space Truss Structure Assembly Using a Distributed Adaptive Neural Network Approach. Acta Astronautica, 212, 29-40.
https://doi.org/10.1016/j.actaastro.2023.07.034
[23]  Shi, J., Liu, X., Cai, G.-P., et al. (2023) Active Control of Large Space Antenna Truss Structures Using the Equivalent Beam Model. Acta Mechanica Sinica, 39, Article ID: 522475.
https://doi.org/10.1007/s10409-023-22475-x
[24]  夏兆旺, 茅凯杰, 王雪涛, 等. 海洋平台桁架结构半主动颗粒阻尼减振技术研究[J]. 振动与冲击, 2018, 37(4): 93-98.
[25]  杨恺, 崔龙, 黄海. 主被动电磁式动力吸振器及其在桁架振动控制中的应用[J]. 振动与冲击, 2012, 31(18): 14-19.
[26]  段应昌等. 轴向运动梁动力学及其应用[M]. 徐州: 中国矿业大学出版社, 2019.
[27]  陈志军. 高速铁路桥梁动力学问题分析及控制策略研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2006.
[28]  段瑶瑶. 智能桁架结构模糊控制系统建模及优化[D]: [硕士学位论文]. 邯郸: 河北工程大学, 2016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133