全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于人脸的生物密钥派生方案
A Face-Based Biometric Key Derivation Scheme

DOI: 10.12677/airr.2024.133058, PP. 565-570

Keywords: 密钥派生,生物密钥,纠错码
Biometric Features
, Key Derivation, Error Correct Code

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种基于人脸的生物密钥派生方案。该方案利用人脸特征作为生物识别的基础,通过采集、分析和提取人脸图像中的特征信息,并将其转化为数字化的生物密钥。在派生过程中,结合了图像处理技术和加密算法,确保生物密钥的安全性和唯一性。此外,本方案还考虑了人脸识别的准确性和实时性,通过优化算法和提高识别速度,提升了系统的性能表现。实验结果表明,所提出的基于人脸的生物密钥派生方案在生物识别领域具有良好的应用前景和可行性,可为安全认证系统的设计和实现提供一种有效的解决方案。
This paper proposes a facial-based biometric key derivation scheme. The scheme utilizes facial features as the basis for biometric recognition, by collecting, analyzing, and extracting feature information from facial images, and converting it into digital biometric keys. During the derivation process, a combination of image processing techniques and encryption algorithms is employed to ensure the security and uniqueness of the biometric keys. Additionally, the scheme considers the accuracy and real-time performance of facial recognition, enhancing system performance through algorithm optimization and increased recognition speed. Experimental results demonstrate that the proposed facial-based biometric key derivation scheme holds promising prospects and feasibility in the field of biometric recognition, providing an effective solution for the design and implementation of secure authentication systems.

References

[1]  游林. 生物特征密码技术综述[J]. 杭州电子科技大学学报(自然科学版), 2015, 35(3): 1-17.
[2]  Venckauskas, A. and Nanevicius, P. (2013) Cryptographic Key Generation from Finger Vein. International Journal of Engineering Sciences and Research Technology, 2, 733-738.
[3]  Juels, A. and Sudan, M. (2006) A Fuzzy Vault Scheme. Designs, Codes and Cryptography, 38, 237-257.
https://doi.org/10.1007/s10623-005-6343-z
[4]  魏宁. 基于生物特征模板公开的密钥生成与应用研究[D]: [硕士学位论文]. 天津: 天津工业大学, 2016.
[5]  Anees, A. and Chen, Y.P. (2018) Discriminative Binary Feature Learning and Quantization in Biometric Key Generation. Pattern Recognition, 77, 289-305.
https://doi.org/10.1016/j.patcog.2017.11.018
[6]  Wang, Y., Li, B., Zhang, Y., Wu, J. and Ma, Q. (2021) A Secure Biometric Key Generation Mechanism via Deep Learning and Its Application. Applied Sciences, 11, Article 8497.
https://doi.org/10.3390/app11188497
[7]  Gaddam, S.V.K. and Lal, M. (2010) Efficient Cancelable Biometric Key Generation Scheme for Cryptography. International Journal of Network Security, 11, 61-69.
[8]  Li, N., Guo, F., Mu, Y., Susilo, W. and Nepal, S. (2017) Fuzzy Extractors for Biometric Identification. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, 5-8 June 2017, 667-677.
https://doi.org/10.1109/icdcs.2017.107
[9]  Wang, P., You, L., Hu, G., Hu, L., Jian, Z. and Xing, C. (2021) Biometric Key Generation Based on Generated Intervals and Two-Layer Error Correcting Technique. Pattern Recognition, 111, Article ID: 107733.
https://doi.org/10.1016/j.patcog.2020.107733
[10]  Wu, Y. and Qiu, B. (2010) Transforming a Pattern Identifier into Biometric Key Generators. 2010 IEEE International Conference on Multimedia and Expo, Singapore, 19-23 July 2010, 78-82.
https://doi.org/10.1109/icme.2010.5583388
[11]  董锦锦. 基于混沌加密的多模态生物模板保护技术研究[D]: [硕士学位论文]. 哈尔滨: 黑龙江大学, 2018.
[12]  赵铖辉. 基于人脸模板保护的数字身份技术研究与实现[D]: [硕士学位论文]. 北京: 北京交通大学, 2020.
[13]  Barni, M., Droandi, G., Lazzeretti, R. and Pignata, T. (2019) SEMBA: Secure Multi‐biometric Authentication. IET Biometrics, 8, 411-421.
https://doi.org/10.1049/iet-bmt.2018.5138

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133