|
炎性细胞与缺血性卒中的研究进展
|
Abstract:
急性脑血管疾病包括急性出血性卒中和急性缺血性卒中。目前急性缺血性卒中是我国致死及致残的主要原因之一,亦是全球最常见的卒中类型。作为一种重要的病理机制,急性脑梗死发生后炎症免疫反应会被激活。最为常见的炎症指标是外周血中的白细胞、中性粒细胞、淋巴细胞、单核细胞。本文从神经炎症机制和中性粒细胞、单核细胞、淋巴细胞在发生缺血性卒中后的炎症反应以及炎症相关指标对脑梗死的预测作用进行综述。
Acute cerebrovascular diseases include acute hemorrhagic stroke and acute ischemic stroke. At present, acute ischemic stroke is one of the main causes of death and disability in China, and it is also the most common type of stroke worldwide. As an important pathological mechanism, the inflammatory immune response is activated after acute cerebral infarction occurs. The most common inflammatory markers are white blood cells, neutrophils, lymphocytes, and monocytes in peripheral blood. This article reviews the mechanisms of neuroinflammation and the inflammatory responses of neutrophils, monocytes, and lymphocytes after ischemic stroke, as well as the predictive role of inflammation related indicators for cerebral infarction.
[1] | Ma, Q., Li, R., Wang, L., Yin, P., Wang, Y., Yan, C., et al. (2021) Temporal Trend and Attributable Risk Factors of Stroke Burden in China, 1990-2019: An Analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 6, e897-e906. https://doi.org/10.1016/s2468-2667(21)00228-0 |
[2] | Wang, W., Jiang, B., Sun, H., Ru, X., Sun, D., Wang, L., et al. (2017) Prevalence, Incidence, and Mortality of Stroke in China. Circulation, 135, 759-771. https://doi.org/10.1161/circulationaha.116.025250 |
[3] | 龙章玲, 胡晓. 阿司匹林和氯吡格雷在急性脑梗死中的应用进展[J]. 中国医药, 2019, 14(8): 1262-1265. |
[4] | Gu, H., Yang, X., Wang, C., Zhao, X., Wang, Y., Liu, L., et al. (2021) Clinical Characteristics, Management, and in-Hospital Outcomes in Patients with Stroke or Transient Ischemic Attack in China. JAMA Network Open, 4, e2120745. https://doi.org/10.1001/jamanetworkopen.2021.20745 |
[5] | Wang, M., Wang, C., Gu, H., Meng, X., Jiang, Y., Yang, X., et al. (2022) Sex Differences in Short-Term and Long-Term Outcomes among Patients with Acute Ischemic Stroke in China. Stroke, 53, 2268-2275. https://doi.org/10.1161/strokeaha.121.037121 |
[6] | Tu, W., Chao, B., Ma, L., Yan, F., Cao, L., Qiu, H., et al. (2021) Case-Fatality, Disability and Recurrence Rates after First-Ever Stroke: A Study from Bigdata Observatory Platform for Stroke of China. Brain Research Bulletin, 175, 130-135. https://doi.org/10.1016/j.brainresbull.2021.07.020 |
[7] | Tu, W., Wang, L., Yan, F., Peng, B., Hua, Y., Liu, M., et al. (2023) China Stroke Surveillance Report 2021. Military Medical Research, 10, Article No. 33. https://doi.org/10.1186/s40779-023-00463-x |
[8] | Yang, T., Fan, K., Cao, Y., Yan, J. and Han, Z. (2020) Stroke Type, Etiology, Clinical Features and Prognosis of Diabetic Patients in Southern China. Clinical and Applied Thrombosis/Hemostasis, 26, 1-6. https://doi.org/10.1177/1076029620973090 |
[9] | 陈一丁, 姚伟峰, 万惠, 等. 2型糖尿病合并非酒精性脂肪性肝病的相关影响因素及其与颈动脉粥样硬化的关系研究[J]. 中国全科医学, 2013, 15(35): 4131-4134. |
[10] | Libby, P. (2021) Inflammation during the Life Cycle of the Atherosclerotic Plaque. Cardiovascular Research, 117, 2525-2536. https://doi.org/10.1093/cvr/cvab303 |
[11] | Cybulsky, M.I. and Gimbrone, M.A. (1991) Endothelial Expression of a Mononuclear Leukocyte Adhesion Molecule during Atherogenesis. Science, 251, 788-791. https://doi.org/10.1126/science.1990440 |
[12] | Tani, S., Matsumoto, M., Anazawa, T., Kawamata, H., Furuya, S., Takahashi, H., et al. (2011) Development of a Model for Prediction of Coronary Atherosclerotic Regression: Evaluation of High-Density Lipoprotein Cholesterol Level and Peripheral Blood Monocyte Count. Heart and Vessels, 27, 143-150. https://doi.org/10.1007/s00380-011-0130-8 |
[13] | Açıkgöz, S.K., Açıkgöz, E., Şensoy, B., et al. (2016) Monocyte to High-Density Lipoprotein Cholesterol Ratio Is Predictive of in-Hospital and Five-Year Mortality in ST-Segment Elevation Myocardial Infarction. Cardiology Journal, 23, 505-512. |
[14] | ElAli, A. and Jean LeBlanc, N. (2016) The Role of Monocytes in Ischemic Stroke Pathobiology: New Avenues to Explore. Frontiers in Aging Neuroscience, 8, Article 29. https://doi.org/10.3389/fnagi.2016.00029 |
[15] | Liberale, L., Montecucco, F., Bonaventura, A., Casetta, I., Seraceni, S., Trentini, A., et al. (2017) Monocyte Count at Onset Predicts Poststroke Outcomes during a 90-Day Follow-up. European Journal of Clinical Investigation, 47, 702-710. https://doi.org/10.1111/eci.12795 |
[16] | Jiang, X., Andjelkovic, A.V., Zhu, L., Yang, T., Bennett, M.V.L., Chen, J., et al. (2018) Blood-Brain Barrier Dysfunction and Recovery after Ischemic Stroke. Progress in Neurobiology, 163, 144-171. https://doi.org/10.1016/j.pneurobio.2017.10.001 |
[17] | Li, J., Ren, H., Wang, Y., Hoang, D.M., Li, Y. and Yao, X. (2022) Mechanism of Stat1 in the Neuronal Ca2+ Overload after Intracerebral Hemorrhage via the H3K27ac/Trpm7 Axis. Journal of Neurophysiology, 128, 253-262. https://doi.org/10.1152/jn.00083.2022 |
[18] | Orellana-Urzúa, S., Rojas, I., Líbano, L. and Rodrigo, R. (2020) Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Current Pharmaceutical Design, 26, 4246-4260. https://doi.org/10.2174/1381612826666200708133912 |
[19] | 高巍, 韩志君, 杜永胜, 等. 中性粒细胞/淋巴细胞比值与急性缺血性脑梗塞预后的关系[J]. 临床与病理杂志, 2014, 34(5): 509-513. |
[20] | Kleinschnitz, C., Kraft, P., Dreykluft, A., Hagedorn, I., Göbel, K., Schuhmann, M.K., et al. (2013) Regulatory T Cells Are Strong Promoters of Acute Ischemic Stroke in Mice by Inducing Dysfunction of the Cerebral Microvasculature. Blood, 121, 679-691. https://doi.org/10.1182/blood-2012-04-426734 |
[21] | Joo, S.P., Xie, W., Xiong, X., Xu, B. and Zhao, H. (2013) Ischemic Postconditioning Protects against Focal Cerebral Ischemia by Inhibiting Brain Inflammation While Attenuating Peripheral Lymphopenia in Mice. Neuroscience, 243, 149-157. https://doi.org/10.1016/j.neuroscience.2013.03.062 |
[22] | Ruhnau, J., Schulze, J., von Sarnowski, B., Heinrich, M., Langner, S., Pötschke, C., et al. (2016) Reduced Numbers and Impaired Function of Regulatory T Cells in Peripheral Blood of Ischemic Stroke Patients. Mediators of Inflammation, 2016, Article 2974605. https://doi.org/10.1155/2016/2974605 |
[23] | Feng, Y., Liao, S., Wei, C., Jia, D., Wood, K., Liu, Q., et al. (2017) Infiltration and Persistence of Lymphocytes during Late-Stage Cerebral Ischemia in Middle Cerebral Artery Occlusion and Photothrombotic Stroke Models. Journal of Neuroinflammation, 14, Article No. 248. https://doi.org/10.1186/s12974-017-1017-0 |
[24] | Liesz, A., Suri-Payer, E., Veltkamp, C., Doerr, H., Sommer, C., Rivest, S., et al. (2009) Regulatory T Cells Are Key Cerebroprotective Immunomodulators in Acute Experimental Stroke. Nature Medicine, 15, 192-199. https://doi.org/10.1038/nm.1927 |
[25] | Nishijima, T.F., Muss, H.B., Shachar, S.S., Tamura, K. and Takamatsu, Y. (2015) Prognostic Value of Lymphocyte-to-Monocyte Ratio in Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancer Treatment Reviews, 41, 971-978. https://doi.org/10.1016/j.ctrv.2015.10.003 |
[26] | Ji, H., Li, Y., Fan, Z., Zuo, B., Jian, X., Li, L., et al. (2017) Monocyte/Lymphocyte Ratio Predicts the Severity of Coronary Artery Disease: A Syntax Score Assessment. BMC Cardiovascular Disorders, 17, Article No. 90. https://doi.org/10.1186/s12872-017-0507-4 |
[27] | Zhu, J., Liu, C., Wang, L., Zhong, M., Tang, H. and Wang, H. (2017) Peripheral Blood Lymphocyte-to-Monocyte Ratio as a Prognostic Factor in Advanced Epithelial Ovarian Cancer: A Multicenter Retrospective Study. Journal of Cancer, 8, 737-743. https://doi.org/10.7150/jca.17668 |
[28] | Kim, J.Y., Park, J., Chang, J.Y., Kim, S. and Lee, J.E. (2016) Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Experimental Neurobiology, 25, 241-251. https://doi.org/10.5607/en.2016.25.5.241 |
[29] | Kaito, M., Araya, S., Gondo, Y., Fujita, M., Minato, N., Nakanishi, M., et al. (2013) Relevance of Distinct Monocyte Subsets to Clinical Course of Ischemic Stroke Patients. PLOS ONE, 8, e69409. https://doi.org/10.1371/journal.pone.0069409 |
[30] | Guruswamy, R. and ElAli, A. (2017) Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. International Journal of Molecular Sciences, 18, Article 496. https://doi.org/10.3390/ijms18030496 |
[31] | Zhao, M., Tuo, H., Wang, S. and Zhao, L. (2020) The Roles of Monocyte and Monocyte-Derived Macrophages in Common Brain Disorders. BioMed Research International, 2020, Article 9396021. https://doi.org/10.1155/2020/9396021 |
[32] | Dimitrijevic, O.B., Stamatovic, S.M., Keep, R.F. and Andjelkovic, A.V. (2005) Effects of the Chemokine CCL2 on Blood-Brain Barrier Permeability during Ischemia-Reperfusion Injury. Journal of Cerebral Blood Flow & Metabolism, 26, 797-810. https://doi.org/10.1038/sj.jcbfm.9600229 |
[33] | Tian, Z., Ji, X. and Liu, J. (2022) Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. International Journal of Molecular Sciences, 23, Article 6224. https://doi.org/10.3390/ijms23116224 |
[34] | Coillard, A. and Segura, E. (2019) In vivo Differentiation of Human Monocytes. Frontiers in Immunology, 10, Article 1907. https://doi.org/10.3389/fimmu.2019.01907 |
[35] | Grau, A.J., Boddy, A.W., Dukovic, D.A., Buggle, F., Lichy, C., Brandt, T., et al. (2004) Leukocyte Count as an Independent Predictor of Recurrent Ischemic Events. Stroke, 35, 1147-1152. https://doi.org/10.1161/01.str.0000124122.71702.64 |
[36] | Kim, J., Song, T., Park, J.H., Lee, H.S., Nam, C.M., Nam, H.S., et al. (2012) Different Prognostic Value of White Blood Cell Subtypes in Patients with Acute Cerebral Infarction. Atherosclerosis, 222, 464-467. https://doi.org/10.1016/j.atherosclerosis.2012.02.042 |
[37] | Buck, B.H., Liebeskind, D.S., Saver, J.L., Bang, O.Y., Yun, S.W., Starkman, S., et al. (2008) Early Neutrophilia Is Associated with Volume of Ischemic Tissue in Acute Stroke. Stroke, 39, 355-360. https://doi.org/10.1161/strokeaha.107.490128 |
[38] | Kumar, A.D., Boehme, A.K., Siegler, J.E., Gillette, M., Albright, K.C. and Martin-Schild, S. (2013) Leukocytosis in Patients with Neurologic Deterioration after Acute Ischemic Stroke Is Associated with Poor Outcomes. Journal of Stroke and Cerebrovascular Diseases, 22, e111-e117. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.08.008 |
[39] | Kelly, P.J., Morrow, J.D., Ning, M., Koroshetz, W., Lo, E.H., Terry, E., et al. (2008) Oxidative Stress and Matrix Metalloproteinase-9 in Acute Ischemic Stroke. Stroke, 39, 100-104. https://doi.org/10.1161/strokeaha.107.488189 |
[40] | Heo, J.H., Lucero, J., Abumiya, T., Koziol, J.A., Copeland, B.R. and del Zoppo, G.J. (1999) Matrix Metalloproteinases Increase Very Early during Experimental Focal Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 19, 624-633. https://doi.org/10.1097/00004647-199906000-00005 |
[41] | Rosell, A., Cuadrado, E., Ortega-Aznar, A., Hernández-Guillamon, M., Lo, E.H. and Montaner, J. (2008) MMP-9-Positive Neutrophil Infiltration Is Associated to Blood-Brain Barrier Breakdown and Basal Lamina Type IV Collagen Degradation during Hemorrhagic Transformation after Human Ischemic Stroke. Stroke, 39, 1121-1126. https://doi.org/10.1161/strokeaha.107.500868 |
[42] | Lindsberg, P.J., Sirén, A., Feuerstein, G.Z. and Hallenbeck, J.M. (1995) Antagonism of Neutrophil Adherence in the Deteriorating Stroke Model in Rabbits. Journal of Neurosurgery, 82, 269-277. https://doi.org/10.3171/jns.1995.82.2.0269 |
[43] | Zhang, R.L., Chopp, M., Jiang, N., Tang, W.X., Prostak, J., Manning, A.M., et al. (1995) Anti-Intercellular Adhesion Molecule-1 Antibody Reduces Ischemic Cell Damage after Transient but Not Permanent Middle Cerebral Artery Occlusion in the Wistar Rat. Stroke, 26, 1438-1443. https://doi.org/10.1161/01.str.26.8.1438 |
[44] | Neumann, J., Riek-Burchardt, M., Herz, J., Doeppner, T.R., König, R., Hütten, H., et al. (2014) Very-Late-Antigen-4 (VLA-4)-Mediated Brain Invasion by Neutrophils Leads to Interactions with Microglia, Increased Ischemic Injury and Impaired Behavior in Experimental Stroke. Acta Neuropathologica, 129, 259-277. https://doi.org/10.1007/s00401-014-1355-2 |
[45] | Perez-de-Puig, I., Miró-Mur, F., Ferrer-Ferrer, M., Gelpi, E., Pedragosa, J., Justicia, C., et al. (2014) Neutrophil Recruitment to the Brain in Mouse and Human Ischemic Stroke. Acta Neuropathologica, 129, 239-257. https://doi.org/10.1007/s00401-014-1381-0 |
[46] | 翟萌萌, 王建平, 余列, 等. 中性粒细胞与淋巴细胞比值对急性脑梗死患者预后的预测价值[J]. 中国脑血管病杂志, 2017, 14(2): 82-86. |
[47] | Jickling, G.C., Liu, D., Ander, B.P., Stamova, B., Zhan, X. and Sharp, F.R. (2015) Targeting Neutrophils in Ischemic Stroke: Translational Insights from Experimental Studies. Journal of Cerebral Blood Flow & Metabolism, 35, 888-901. https://doi.org/10.1038/jcbfm.2015.45 |
[48] | Kalimo, H., del Zoppo, G.J., Paetau, A. and Lindsberg, P.J. (2013) Polymorphonuclear Neutrophil Infiltration into Ischemic Infarctions: Myth or Truth? Acta Neuropathologica, 125, 313-316. https://doi.org/10.1007/s00401-013-1098-5 |
[49] | Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. https://doi.org/10.1126/science.1092385 |
[50] | Sørensen, O.E. and Borregaard, N. (2016) Neutrophil Extracellular Traps—The Dark Side of Neutrophils. Journal of Clinical Investigation, 126, 1612-1620. https://doi.org/10.1172/jci84538 |
[51] | Knight, J.S., Zhao, W., Luo, W., Subramanian, V., O’Dell, A.A., Yalavarthi, S., et al. (2013) Peptidylarginine Deiminase Inhibition Is Immunomodulatory and Vasculoprotective in Murine Lupus. Journal of Clinical Investigation, 123, 2981-2993. https://doi.org/10.1172/jci67390 |
[52] | Chu, H.X., Kim, H.A., Lee, S., Moore, J.P., Chan, C.T., Vinh, A., et al. (2013) Immune Cell Infiltration in Malignant Middle Cerebral Artery Infarction: Comparison with Transient Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 34, 450-459. https://doi.org/10.1038/jcbfm.2013.217 |
[53] | Becker, K.J., Kalil, A.J., Tanzi, P., Zierath, D.K., Savos, A.V., Gee, J.M., et al. (2011) Autoimmune Responses to the Brain after Stroke Are Associated with Worse Outcome. Stroke, 42, 2763-2769. https://doi.org/10.1161/strokeaha.111.619593 |
[54] | Yilmaz, G., Arumugam, T.V., Stokes, K.Y. and Granger, D.N. (2006) Role of T Lymphocytes and Interferon-γ in Ischemic Stroke. Circulation, 113, 2105-2112. https://doi.org/10.1161/circulationaha.105.593046 |
[55] | 黄铭娜, 任丽, 吴锡骅, 等. 急性脑梗死患者外周血T淋巴细胞、B淋巴细胞亚群和NK细胞的变化及临床意义[J]. 海南医学, 2019, 30(16): 2055-2057. |
[56] | Stubbe, T., Ebner, F., Richter, D., Engel, O.R., Klehmet, J., Royl, G., et al. (2012) Regulatory T Cells Accumulate and Proliferate in the Ischemic Hemisphere for up to 30 Days after MCAO. Journal of Cerebral Blood Flow & Metabolism, 33, 37-47. https://doi.org/10.1038/jcbfm.2012.128 |
[57] | Lichtman, A.H., Binder, C.J., Tsimikas, S. and Witztum, J.L. (2013) Adaptive Immunity in Atherogenesis: New Insights and Therapeutic Approaches. Journal of Clinical Investigation, 123, 27-36. https://doi.org/10.1172/jci63108 |
[58] | Bornstein, N.M., Aronovich, B., Korczyn, A.D., Shavit, S., Michaelson, D.M. and Chapman, J. (2001) Antibodies to Brain Antigens Following Stroke. Neurology, 56, 529-530. https://doi.org/10.1212/wnl.56.4.529 |
[59] | Ren, X., Akiyoshi, K., Dziennis, S., Vandenbark, A.A., Herson, P.S., Hurn, P.D., et al. (2011) Regulatory B Cells Limit CNS Inflammation and Neurologic Deficits in Murine Experimental Stroke. Journal of Neuroscience, 31, 8556-8563. https://doi.org/10.1523/jneurosci.1623-11.2011 |
[60] | Bodhankar, S., Chen, Y., Lapato, A., Vandenbark, A.A., Murphy, S.J., Saugstad, J.A., et al. (2014) Regulatory CD8+CD122+ T-Cells Predominate in CNS after Treatment of Experimental Stroke in Male Mice with Il-10-Secreting B-Cells. Metabolic Brain Disease, 30, 911-924. https://doi.org/10.1007/s11011-014-9639-8 |
[61] | Doyle, K.P., Quach, L.N., Solé, M., Axtell, R.C., Nguyen, T.V., Soler-Llavina, G.J., et al. (2015) B-Lymphocyte-Mediated Delayed Cognitive Impairment Following Stroke. The Journal of Neuroscience, 35, 2133-2145. https://doi.org/10.1523/jneurosci.4098-14.2015 |
[62] | Kuprash, D.V. and Nedospasov, S.A. (2016) Molecular and Cellular Mechanisms of Inflammation. Biochemistry (Moscow), 81, 1237-1239. https://doi.org/10.1134/s0006297916110018 |
[63] | Candelario-Jalil, E., Dijkhuizen, R.M. and Magnus, T. (2022) Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke, 53, 1473-1486. https://doi.org/10.1161/strokeaha.122.036946 |
[64] | Gertje, E.C., van Westen, D., Panizo, C., Mattsson-Carlgren, N. and Hansson, O. (2021) Association of Enlarged Perivascular Spaces and Measures of Small Vessel and Alzheimer Disease. Neurology, 96, e193-e202. https://doi.org/10.1212/wnl.0000000000011046 |
[65] | Benakis, C., Simats, A., Tritschler, S., Heindl, S., Besson-Girard, S., Llovera, G., et al. (2022) T Cells Modulate the Microglial Response to Brain Ischemia. eLife, 11, e82031. https://doi.org/10.7554/elife.82031 |
[66] | Xue, J., Huang, W., Chen, X., Li, Q., Cai, Z., Yu, T., et al. (2017) Neutrophil-to-Lymphocyte Ratio Is a Prognostic Marker in Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 26, 650-657. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.010 |
[67] | Kleinschnitz, C., Schwab, N., Kraft, P., Hagedorn, I., Dreykluft, A., Schwarz, T., et al. (2010) Early Detrimental T-Cell Effects in Experimental Cerebral Ischemia Are Neither Related to Adaptive Immunity nor Thrombus Formation. Blood, 115, 3835-3842. https://doi.org/10.1182/blood-2009-10-249078 |
[68] | Ren, H., Liu, X., Wang, L. and Gao, Y. (2017) Lymphocyte-to-Monocyte Ratio: A Novel Predictor of the Prognosis of Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 26, 2595-2602. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.019 |
[69] | Nguyen, G., Cercy, K., Johnson, C.O., et al. (2018) Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. New England Journal of Medicine, 379, 2429-2437. https://doi.org/10.1056/nejmoa1804492 |
[70] | Ekker, M.S., Verhoeven, J.I., Vaartjes, I., van Nieuwenhuizen, K.M., Klijn, C.J.M. and de Leeuw, F. (2019) Stroke Incidence in Young Adults According to Age, Subtype, Sex, and Time Trends. Neurology, 92, e2444-e2454. https://doi.org/10.1212/wnl.0000000000007533 |