|
Material Sciences 2024
三维花状SnO2@NC负极材料的制备及储锂性能研究
|
Abstract:
采用水热合成法制备了一种三维花状SnO2微米材料,并以多巴胺作为碳源在其表面包覆一层氮掺杂碳层(SnO2@NC)。作为锂离子电池负极材料,SnO2@NC相比于SnO2表现出更为优异的电化学性能。实验数据显示:SnO2@NC在1 A·g?1电流密度下循环500圈仍然保持430.9 mA·h·g?1的可逆比容量,倍率性能在5 A·g?1电流密度下具有566.9 mA·h·g?1的高放电容量。其优异的电化学性能得益于外部包覆的碳层缓解了SnO2充放电过程中的体积膨胀,以及氮掺杂碳层加快了材料电子/离子传输速率。
A three-dimensional flower-like SnO2 micromaterial was prepared by hydrothermal synthesis and coated with a nitrogen-doped carbon layer (SnO2@NC) using dopamine as a carbon source. As an anode material for lithium-ion batteries, SnO2@NC exhibits superior electrochemical properties compared with SnO2. The experimental data show that SnO2@NC maintains a reversible specific capacity of 430.9 mA·h·g?1 after 500 cycles at a current density of 1 A·g?1, and a high discharge capacity of 566.9 mA·h·g?1 at a current density of 5 A·g-1 for multiplication performance. The excellent electrochemical performance is attributed to the externally coated carbon layer that mitigates the volume expansion of SnO2 during charging and discharging, as well as the nitrogen-doped carbon layer that accelerates the electron-ion transport rate of the material.
[1] | 林志雅, 张如萍, 林诺灵, 等. CNTs负载纳米TiO2的制备及储锂性能研究[J]. 宁德师范学院学报(自然科学版), 2022, 34(4): 337-342. |
[2] | Dong, W., Xu, J., Wang, C., Lu, Y., Liu, X., Wang, X., et al. (2017) A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithium‐Ion Batteries Possible. Advanced Materials, 29, Article 1700136. https://doi.org/10.1002/adma.201700136 |
[3] | Zhang, M., Wang, T. and Cao, G. (2015) Promises and Challenges of Tin-Based Compounds as Anode Materials for Lithium-Ion Batteries. International Materials Reviews, 60, 330-352. https://doi.org/10.1179/1743280415y.0000000004 |
[4] | Fan, B., Liu, J., Xu, Y., Tang, Q., Zhang, Y., Chen, X., et al. (2021) A Facile Strategy Towards High Capacity and Stable Sn Anodes for Li-Ion Battery: Dual-Confinement via Sn@SnO2 Core-Shell Nanoparticles Embedded in 3D Graphitized Porous Carbon Network. Journal of Alloys and Compounds, 857, Article 157920. https://doi.org/10.1016/j.jallcom.2020.157920 |
[5] | Zhang, Y. and Wang, C. (2020) Environment-Friendly Synthesis of Carbon-Encapsulated SnO2 Core-Shell Nanocubes as High-Performance Anode Materials for Lithium Ion Batteries. Materials Today Energy, 16, Article 100406. https://doi.org/10.1016/j.mtener.2020.100406 |
[6] | Qin, J., He, C., Zhao, N., Wang, Z., Shi, C., Liu, E., et al. (2014) Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode. ACS Nano, 8, 1728-1738. https://doi.org/10.1021/nn406105n |
[7] | Yang, J., Guo, X., Gao, H., Wang, T., Liu, Z., Yang, Q., et al. (2023) A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries. Advanced Energy Materials, 13, Article 2300351. https://doi.org/10.1002/aenm.202300351 |
[8] | Xu, T., Wu, J., Li, Y. and Xiao, H. (2024) High-Stable and High-Capacity Sn/SnO2@C as Anode of Lithium-Ion Batteries. Journal of Wuhan University of Technology-Mater. Sci. Ed., 39, 805-813. https://doi.org/10.1007/s11595-024-2940-4 |
[9] | Hong, Y.J., Son, M.Y. and Kang, Y.C. (2013) One‐Pot Facile Synthesis of Double‐Shelled SnO2 Yolk‐Shell‐Structured Powders by Continuous Process as Anode Materials for Li‐Ion Batteries. Advanced Materials, 25, 2279-2283. https://doi.org/10.1002/adma.201204506 |
[10] | Jiang, B., He, Y., Li, B., Zhao, S., Wang, S., He, Y., et al. (2017) Polymer‐Templated Formation of Polydopamine‐ Coated SnO2 Nanocrystals: Anodes for Cyclable Lithium‐Ion Batteries. Angewandte Chemie International Edition, 56, 1869-1872. https://doi.org/10.1002/anie.201611160 |
[11] | Wang, H., Wu, Q., Wang, Y., Wang, X., Wu, L., Song, S., et al. (2018) Molecular Engineering of Monodisperse SnO2 Nanocrystals Anchored on Doped Graphene with High‐Performance Lithium/Sodium‐Storage Properties in Half/Full Cells. Advanced Energy Materials, 9, Article 1802993. https://doi.org/10.1002/aenm.201802993 |
[12] | Lin, Z., Wu, J., Ye, Q., Chen, Y., Jia, H., Huang, X., et al. (2024) Coral-Like CoSe2@N-Doped Carbon with a High Initial Coulombic Efficiency as Advanced Anode Materials for Na-Ion Batteries. Dalton Transactions, 53, 765-771. https://doi.org/10.1039/d3dt03548d |
[13] | Lin, Z., Tan, X., Ge, L., Lin, Y., Yang, W., Lin, J., et al. (2022) Ultrathin 2D Hexagon Cop/N-Doped Carbon Nanosheets for Robust Sodium Storage. Journal of Alloys and Compounds, 921, Article 166075. https://doi.org/10.1016/j.jallcom.2022.166075 |