全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hygrothermal Properties of a Composite Based on Clay Soils and Diatomite

DOI: 10.4236/ojce.2024.143019, PP. 363-373

Keywords: Clay Soil, Diatomite, Capillary Absorption, Erodibility and Thermal Conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behaviour of composites based on clay soils. For this reason, two clay soils with different physicochemical and mineralogical compositions were incorporated with diatomite at percentages ranging from 5% to 50% with a step of 5 to produce compressed earth blocks. After assessing the hydric and thermal characteristics of the composites, it was found that the incorporation of diatomite into the clay matrix favours the absorption of water by capillary action for all the composites. The diatomite-amended blocks subjected to the rain erosion test were less eroded than the unamended blocks. In addition, BYD composites were found to be more resistant than BTD composites, due to the high percentage of clay in T soil. The thermal conductivity of the latter decreases respectively from 0.72 to 0.29 W/m?K for BTD composites and from 0.52 to 0.21 W/m?K for BYD composites. This reduction proves the thermal insulating properties of diatomite. Despite the high capillary absorption capacity of these composites, they have good thermal properties, enabling them to be used in the construction of buildings for improved indoor thermal comfort.

References

[1]  Némoz, S. (2011) La construction impérative de l’habitat durable. EmulationsRevue de Sciences Sociales, 1, 1-9.
https://doi.org/10.14428/emulations.varia.004
[2]  Kouka Amed, J.O. (2019) Stabilisation de matériaux de construction durables et écologiques à base de terre crue par des liants organiques et/ou minéraux à faibles impacts environnementaux. Master’s Thesis, Université Paul Sabatier-Toulouse III.
[3]  Kiki, G.J.D., Houngan, C.A., Kouchade, C., Djossou, A., Andre, P. and Vianou, A. (2020) Amélioration du confort thermique des bâtiments par utilisation de l’inertie thermique des composites argile-paille de chiendent.
[4]  Abessolo, D., Biwolé, A., Didier, F., Morino, B., Ganou Koungang, B.M. and Yebga, B. (2020) Effets de la longueur et de la teneur des fibres de bambou sur les propriétés physicomécaniques et hygroscopiques des Blocs de Terre Comprimée (BTC) utilisés dans la construction. Afrique Science Revue Internationale des Sciences et Technologie, 16, 13-22.
[5]  Bisht, N., Gope, P.C. and Rani, N. (2020) Rice Husk as a Fibre in Composites: A Review. Journal of the Mechanical Behavior of Materials, 29, 147-162.
https://doi.org/10.1515/jmbm-2020-0015
[6]  Ivanov, S.É. and Belyakov, A.V. (2008) Diatomite and Its Applications. Glass and Ceramics, 65, 48-51.
https://doi.org/10.1007/s10717-008-9005-6
[7]  Togdjim, J., Malloum, S., Abderahman, A.O., Abakar, A. and Alexis Mouangué, N. (2023) Geotechnical, Physicochemical and Mineralogical Characterizations of Soil Quarries in Chad with a View to Their Valorization in Eco-Construction. Journal of Materials and Environmental Science, 14, 255-267.
[8]  Lin, K. and Lan, J. (2013) Water Retention Characteristics of Porous Ceramics Produced from Waste Diatomite and Coal Fly Ash. Journal of Clean Energy Technologies, 1, 211-215.
https://doi.org/10.7763/jocet.2013.v1.48
[9]  Nozahic, V. and Amziane, S. (2012) Influence of Sunflower Aggregates Surface Treatments on Physical Properties and Adhesion with a Mineral Binder. Composites Part A: Applied Science and Manufacturing, 43, 1837-1849.
https://doi.org/10.1016/j.compositesa.2012.07.011
[10]  Yahiaoui, L. (2011) Caractérisation d’un composite à la rupture à base des fibres végétales (Diss). Master’s Thesis, Université FERHAT ABBAS-SETIFUFAS.
[11]  Ouedraogo, M., Dao, K., Millogo, Y., Aubert, J., Messan, A., Seynou, M., et al. (2019) Physical, Thermal and Mechanical Properties of Adobes Stabilized with Fonio (Digitaria Exilis) Straw. Journal of Building Engineering, 23, 250-258.
https://doi.org/10.1016/j.jobe.2019.02.005
[12]  Kabay, N., Tufekci, M.M., Kizilkanat, A.B. and Oktay, D. (2015) Properties of Concrete with Pumice Powder and Fly Ash as Cement Replacement Materials. Construction and Building Materials, 85, 1-8.
https://doi.org/10.1016/j.conbuildmat.2015.03.026
[13]  Bobet, O. (2020) Elaboration et caractérisation de matériaux bio-sourcés à base d’argile de Lougouri et de coques d’arachide. Master’s Thesis, Université Joseph KI-ZERBO, Burkina.
[14]  Locat, J., Bérubé, M. and Choquette, M. (1990) Laboratory Investigations on the Lime Stabilization of Sensitive Clays: Shear Strength Development. Canadian Geotechnical Journal, 27, 294-304.
https://doi.org/10.1139/t90-040
[15]  Langlais, C. and Klarsfeld, S. (2004) Isolation thermique à température ambiante. Classification des isolants. Le Second Oeuvre et LÉquipement du Bâtiment.
https://doi.org/10.51257/a-v3-c3370
[16]  Dal, S., Sutcu, M., Gok, M.S. and Gencel, O. (2020) Characteristics of Lightweight Diatomite-Based Insulating Firebricks. Journal of the Korean Ceramic Society, 57, 184-191.
https://doi.org/10.1007/s43207-020-00020-5
[17]  Moevus, M., Fontaine, L., Anger, R. and Doat, P. (2013) Projet: Béton d’Argile Environnemental (B.A.E.).
https://hal.science/hal-01179458
[18]  Ergün, A. (2011) Effects of the Usage of Diatomite and Waste Marble Powder as Partial Replacement of Cement on the Mechanical Properties of Concrete. Construction and Building Materials, 25, 806-812.
https://doi.org/10.1016/j.conbuildmat.2010.07.002
[19]  Escalera, E., Garcia, G., Terán, R., Tegman, R., Antti, M. and Odén, M. (2015) The Production of Porous Brick Material from Diatomaceous Earth and Brazil Nut Shell Ash. Construction and Building Materials, 98, 257-264.
https://doi.org/10.1016/j.conbuildmat.2015.08.003
[20]  Galal Mors, H.E. (2010) Diatomite: Its Characterization, Modifications and Applications. Asian Journal of Materials Science, 2, 121-136.
https://doi.org/10.3923/ajmskr.2010.121.136
[21]  Mahamat, A.D., Ali, A., Mechling, J., Donnot, A. and Gaye, S. (2023) Characterization of Diatomite for Its Use in Construction: Case Diatomite Sampled in Northern Chad. International Journal of Engineering and Advanced Technology, 13, 32-36.
https://doi.org/10.35940/ijeat.a4293.1013123
[22]  RILEM (1978) Functional Classification of Lightweight Concrete. Materials and Structures, 11, 281-283.
https://www.rilem.net/publication/publication/170?id_papier=5143

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133