The Albian-Maastrichtian interval of the Ivorian sedimentary basin has been the subject of numerous sedimentological, biostratigraphic, and geophysical studies. However, its geochemical characteristics remain relatively unexplored. This study aims to determine the oil potential and the nature of the organic matter it contains. It focuses on the geochemical analysis (physicochemical method) of two oil wells located in the offshore sedimentary basin of C?te d’Ivoire, specifically in the Abidjan margin. A total of 154 cuttings samples from wells TMH-1X and TMH-2X were analyzed to determine their oil potential and the nature of the organic matter (OM) they contain. The analyses were performed using Rock-Eval pyrolysis, a method that characterizes the amount of hydrocarbons generated by the organic matter present in the rocks. The key parameters measured include Total Organic Carbon (TOC), Hydrogen Index (HI), oil potential (S2), and maximum pyrolysis temperature (Tmax). These parameters are used to assess the amount of organic matter, its thermal maturity, and its potential to generate hydrocarbons in the studied wells. The results show significant variations between different stratigraphic levels. In well TMH-1X, the Cenomanian and Campanian intervals stand out with very good quantities of organic matter (OM) with good oil potential, although often immature. In contrast, other stages such as the Albian and Turonian contain organic matter in moderate to low quantities, often immature and of continental type, which limits their capacity to generate hydrocarbons. In well TMH-2X, a similar trend is observed. Despite an abundance of organic matter, the oil potential remains low in most of the studied stages. The organic matter is primarily of type III (continental origin) and thermally immature, indicating a low potential for hydrocarbon generation. The study reveals that, although some intervals exhibit high-quality organic matter, the majority of the samples show insufficient maturity for effective hydrocarbon production. Wells TMH-1X and TMH-2X offer limited oil potential, requiring more advanced maturation conditions to fully exploit the hydrocarbon resources.
References
[1]
Doust, H. and Omatsola, E. (1990) Niger Delta. In: Edwards, J.D. and Santogrossi, P.A., Eds., Divergent/Passive Margin Basins. American Association of Petroleum Geologists Memoir, 201-238. https://doi.org/10.1306/m48508c4
[2]
Perrodon, A. (1992) Petroleum Systems in the Gulf of Guinea. In: Magoon, L.B. and Dow, W.G., Eds., The Petroleum System—From Source to Trap, Vol. 60, American Association of Petroleum Geologists (AAPG), 151-172.
[3]
Brownfield, M.E. and Charpentier, R.R. (2006) Geology and Total Petroleum Systems of the West-Central Coastal Province of West Africa. U.S. Geological Survey Bulletin 2207-C, U.S. Department of the Interior.
[4]
Kokoa, C.M.R., Claverie, L.L.S.A., Donald, A.N., Ephrem, A.M., Aoua, C.S. and Kouadio, A. (2023) Geochemistry of Cretaceous Sea Rocks from the LEO-3X Well in the Eastern Abidjan Margin, Côte d’Ivoire Offshore Basin. OpenJournalofGeology, 13, 1139-1150. https://doi.org/10.4236/ojg.2023.1310047
[5]
Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence. Springer-Verlag.
[6]
Waples, D.W. (1985) Geochemistry in Petroleum Exploration. Springer-Verlag.
[7]
Marinho, M. and Mascle, J. (1987) Evolução estrutural do platô marginal da guiné e sua relação com a formação do oceano atlântico centro-equatorial. RevistaBrasileiradeGeociências, 17, 111-117. https://doi.org/10.25249/0375-7536.1987111117
[8]
Meyers, P.A. (1997) Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and Paleoclimatic Processes. OrganicGeochemistry, 27, 213-250. https://doi.org/10.1016/s0146-6380(97)00049-1
[9]
Kumar, N. and Embley, R.W. (1977) Evolution and Origin of Ceará Rise: An Aseismic Rise in the Western Equatorial Atlantic. GeologicalSocietyofAmericaBulletin, 88, 683-699. https://doi.org/10.1130/0016-7606(1977)88<683:eaoocr>2.0.co;2
[10]
Agyingi, C.M. (2001) Geological Evolution of the Ivory Coast-Ghana Transform Margin. In: Selley, R.C., Cocks, L.R.M. and Plimer, I.R., Eds., Encyclopedia of Geology, Elsevier, 10-19.
[11]
Miall, A.D. (1980) Facts and Principles of World Petroleum Occurrence. Canadian Society of Petroleum Geologists.
[12]
Haack, R.C., Sundararaman, P., Diedjomahor, J.O., Xiao, H., Gant, N.J., May, E.D. and Kelsch, K. (2000) Niger Delta Petroleum Systems, Nigeria, In: Mello, M.R. and Katz, B.J., Eds., Petroleum Systems of South Atlanctic Margins, American Association of Petroleum Geologists, 213-231. https://doi.org/10.1306/M73705C16
[13]
Egoran B. A. (2017) Apport de la stratigraphie séquentielle dans la caractérisation des cortèges de dépôt dans un système pétrolier (roche réservoir, couverture et roche mère) de la marge d’Abidjan. Thèse de Doctorat, Université Félix-Houphouët-Boigny.
[14]
Kokoa C.M.R. (2019) Chimiostratigraphie et potentiel pétrolier des sédiments de l’Est de la marge d’Abidjan (bassin offshore de Côte d’Ivoire). Thèse de Doctorat, Université Félix-Houphouët-Boigny.
[15]
Ahoure, N.D. (2021) Contribution des analyses micro-faunistiques et géochimiques à la stratigraphie séquentielle des dépôts d’âge albien-maastrichtien dans la marge Est du bassin sédimentaire de Côte d’Ivoire. Thèse de Doctorat, Université Félix-Houphouët-Boigny.
[16]
Espitalie, J., Madec, M., Tissot, B., Mennig, J.J. and Leplat, P. (1977) Source Rock Characterization Method for Petroleum Exploration. OffshoreTechnologyConference, Houston, 1-4 May 1977, OTC-2935-MS. https://doi.org/10.4043/2935-ms
[17]
Peters, K.E. (1986) Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPGBulletin, 70, 318-329. https://doi.org/10.1306/94885688-1704-11d7-8645000102c1865d
[18]
Peters, K.E. and Cassa, M.R. (1994) Applied Source Rock Geochemistry. AAPG Memoir, 60, 93-120.
[19]
Peters, K.E., Walters, C.C. and Moldowan, M.J. (2005) The Biomarker Guide: Volume 1, Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, 471.
[20]
Demaison, G.J. and Moore, G.T. (1980) Anoxic Environments and Oil Source Bed Genesis. AAPGBulletin, 64, 1179-1209. https://doi.org/10.1306/2f91945e-16ce-11d7-8645000102c1865d
[21]
Berner, R.A. (2019) The Geochemical Carbon Cycle. In: Applications of Geochemistryin the Geosciences, Vol. 6, Cambridge University Press, 565-569.
[22]
Tyson, R.V. (1995) Abundance of Organic Matter in Sediments: TOC, Hydrodynamic Equivalence, Dilution and Flux Effects. In: Tyson, R.V., Ed., Sedimentary Organic Matter, Springer, 81-118. https://doi.org/10.1007/978-94-011-0739-6_5
[23]
Eglinton, G. and Murphy, M.T.J. (1969) Organic Geochemistry: Methods and Results. Springer-Verlag.
[24]
Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J., etal. (1977) Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d’évolution. Revuedel’InstitutFrançaisduPétrole, 32, 23-42. https://doi.org/10.2516/ogst:1977002
[25]
Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall.
[26]
Dai, J., Zhong, N. and Li, Y. (2020) Characterization of Organic Matter and Its Implications for Hydrocarbon Potential in Lower Cretaceous Lacustrine Mudstones, Songliao Basin, China.
[27]
Espitalie, J., Deroo, G. and Marquis, F. (1985) La pyrolyse Rock-Eval et ses applications. Deuxième partie. Revuedel’InstitutFrançaisduPétrole, 40, 755-784. https://doi.org/10.2516/ogst:1985045
[28]
Zou, Y., Liu, J. and Pang, X. (2021) Hydrocarbon Generation Potential and Hydrocarbon Migration Model of Cambrian Source Rocks in the Southern Sichuan Basin, China: Insights from Organic Geochemistry and Basin Modeling.
[29]
Zhang, Z., Li, M. and Horsfield, B. (2020) Organic Geochemistry and Thermal Maturity of Marine Shale from the Eocene Huadian Formation in the Songliao Basin, NE China: Implications for Shale Gas Potential.
[30]
Zheng, M., Xu, Y. and Liu, L. (2021) Geochemical Characteristics and Hydrocarbon Potential of Lacustrine Shale from the Triassic Yanchang Formation, Ordos Basin, China: Insights from Organic Geochemistry and Petrology.