全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

老龄化影响下破骨细胞对骨折愈合的影响研究
Research on the Impact of Aging on Osteoclasts in Fracture Healing

DOI: 10.12677/ar.2024.114209, PP. 1470-1474

Keywords: 老龄化,破骨细胞,骨折愈合,骨重塑,治疗策略
Aging
, Osteoclasts, Fracture Healing, Bone Remodeling, Therapeutic Strategies

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着全球人口逐渐老龄化,与年龄相关的骨科问题尤其是骨折,已经成为了重大的临床和公共卫生挑战。老年人的骨骼结构随着时间的推移逐渐退化,这不仅增加了骨折的风险,而且还会延缓骨折后的愈合过程。在这一过程中,破骨细胞扮演着至关重要的角色。它们是骨重塑的主要细胞类型,对骨折的愈合过程具有决定性影响。年龄的增长会改变破骨细胞的活性及其对调节信号的响应,进而影响它们的功能,这可能会导致骨折恢复速度减慢和愈合质量降低。文章综述了老龄化背景下破骨细胞的生物学变化及其对骨折愈合的影响,探讨了老龄化如何改变破骨细胞的功能和行为,以及这些变化如何影响骨折的愈合速度和质量。
As the global population increasingly ages, age-related orthopedic issues, particularly fractures, have become significant clinical and public health challenges. Over time, the skeletal structure of the elderly gradually degenerates, not only increasing the risk of fractures but also slowing the healing process after a fracture. In this process, osteoclasts play a crucial role. They are the primary cell type involved in bone remodeling and have a decisive impact on the healing process of fractures. As age progresses, the activity of osteoclasts and their response to regulatory signals change, thereby affecting their function, which can lead to slower recovery rates and reduced healing quality of fractures. This review discusses the biological changes in osteoclasts against the backdrop of aging and their impact on fracture healing, exploring how aging alters the function and behavior of osteoclasts and how these changes affect the speed and quality of fracture healing.

References

[1]  Saul, D. and Khosla, S. (2022) Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocrine Reviews, 43, 984-1002.
https://doi.org/10.1210/endrev/bnac008
[2]  Rose, S. and Maffulli, N. (1999) Hip Fractures. An Epidemiological Review. Bulletin of the Hospital for Joint Diseases, 58, 197-201.
[3]  Omi, M. and Mishina, Y. (2022) Roles of Osteoclasts in Alveolar Bone Remodeling. Genesis, 60, e23490.
https://doi.org/10.1002/dvg.23490
[4]  Szczęsny, G. (2015) Fracture Healing and Its Disturbances. A Literature Review. Ortopedia Traumatologia Rehabilitacja, 17, 437-454.
https://doi.org/10.5604/15093492.1186809
[5]  Hankenson, K.D., Zimmerman, G. and Marcucio, R. (2014) Biological Perspectives of Delayed Fracture Healing. Injury, 45, S8-S15.
https://doi.org/10.1016/j.injury.2014.04.003
[6]  Marsell, R. and Einhorn, T.A. (2011) The Biology of Fracture Healing. Injury, 42, 551-555.
https://doi.org/10.1016/j.injury.2011.03.031
[7]  Yamagiwa, H. and Endo, N. (2009) Bone Fracture and the Healing Mechanisms. Histological Aspect of Fracture Healing. Primary and Secondary Healing. Clinical Calcium, 19, 627-633.
[8]  Huang, W., Zhang, K., Zhu, Y., Wang, Z., Li, Z. and Zhang, J. (2018) Genetic Polymorphisms of NOS2 and Predisposition to Fracture Non-Union: A Case Control Study Based on Han Chinese Population. PLOS ONE, 13, e0193673.
https://doi.org/10.1371/journal.pone.0193673
[9]  Boyce, B.F. (2013) Advances in the Regulation of Osteoclasts and Osteoclast Functions. Journal of Dental Research, 92, 860-867.
https://doi.org/10.1177/0022034513500306
[10]  Chen, Z., Wu, J., Guo, D., Li, Y., Chen, M., Zhang, Z., et al. (2023) Physiological Functions of Podosomes: From Structure and Function to Therapy Implications in Osteoclast Biology of Bone Resorption. Ageing Research Reviews, 85, Article 101842.
https://doi.org/10.1016/j.arr.2023.101842
[11]  Kong, L., Wang, B., Yang, X., He, B., Hao, D. and Yan, L. (2020) Integrin‐Associated Molecules and Signalling Cross Talking in Osteoclast Cytoskeleton Regulation. Journal of Cellular and Molecular Medicine, 24, 3271-3281.
https://doi.org/10.1111/jcmm.15052
[12]  Cao, J.J., Wronski, T.J., Iwaniec, U., Phleger, L., Kurimoto, P., Boudignon, B., et al. (2005) Aging Increases Stromal/Osteoblastic Cell-Induced Osteoclastogenesis and Alters the Osteoclast Precursor Pool in the Mouse. Journal of Bone and Mineral Research, 20, 1659-1668.
https://doi.org/10.1359/jbmr.050503
[13]  Matsumoto, K., Shimo, T., Kurio, N., et al. (2016) Expression and Role of Sonic Hedgehog in the Process of Fracture Healing with Aging. In vivo (Athens, Greece), 30, 99-105.
[14]  Clark, D., Nakamura, M., Miclau, T. and Marcucio, R. (2017) Effects of Aging on Fracture Healing. Current Osteoporosis Reports, 15, 601-608.
https://doi.org/10.1007/s11914-017-0413-9
[15]  Lin, H., Sohn, J., Shen, H., Langhans, M.T. and Tuan, R.S. (2019) Bone Marrow Mesenchymal Stem Cells: Aging and Tissue Engineering Applications to Enhance Bone Healing. Biomaterials, 203, 96-110.
https://doi.org/10.1016/j.biomaterials.2018.06.026
[16]  Deng, W., Li, H., Zhang, Y., Lin, Y., Chen, C., Chen, J., et al. (2023) Isoliensinine Suppresses Bone Loss by Targeted Inhibition of RANKL-RANK Binding. Biochemical Pharmacology, 210, Article 115463.
https://doi.org/10.1016/j.bcp.2023.115463
[17]  Jin, Y., Xu, M., Zhu, H., Dong, C., Ji, J., Liu, Y., et al. (2021) Therapeutic Effects of Bone Marrow Mesenchymal Stem Cells‐Derived Exosomes on Osteoarthritis. Journal of Cellular and Molecular Medicine, 25, 9281-9294.
https://doi.org/10.1111/jcmm.16860
[18]  Polito, A., Barnaba, L., Ciarapica, D. and Azzini, E. (2022) Osteosarcopenia: A Narrative Review on Clinical Studies. International Journal of Molecular Sciences, 23, Article No. 5591.
https://doi.org/10.3390/ijms23105591

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133