全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于半绝热法的现场大体积混凝土水化热预测方法研究
Research on the Prediction Method of Hydration Heat of Mass Concrete On-Site Based on the Semi-Adiabatic Method

DOI: 10.12677/hjce.2024.138161, PP. 1496-1505

Keywords: 大体积混凝土,水化热,半绝热法,热源函数,有限元分析
Mass Concrete
, Hydration Heat, Semi-Adiabatic Method, Heat Source Function, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

在大体积混凝土施工过程中,控制浇筑时的水化热是确保施工质量的关键步骤。目前,主要通过有限元仿真计算来模拟浇筑过程中体系温度的变化。然而,有限元分析得到的模拟数据与实测数据存在较大差距,只能通过后期调整有限元模型的参数来逼近实测数据,无法有效指导施工。为了解决这一问题,本文提出了一种基于半绝热法的现场大体积混凝土水化热预测方法。利用自制的简易水化热测试装置测定实际配合比下混凝土的绝热温升曲线,通过推导得到修正的热源函数模型,并结合实验室标定的水泥水化过程中导热系数函数的时变模型,对有限元分析模型进行修正,使其更加符合实际情况,更贴近实测水化热数据。通过实际工程案例的实测数据与有限元模拟结果的分析,发现此方法可以有效减少有限元模拟结果与实测数据的误差,更有效地指导现场施工,对于控制大体积混凝土水化热引起的温度应力裂缝具有重要意义。
Controlling the hydration heat during the pouring of mass concrete is a crucial step to ensure construction quality. Currently, finite element simulation is primarily used to model the temperature variations during the pouring process. However, significant discrepancies often exist between the simulated data from finite element analysis and the actual measured data. These discrepancies can only be minimized by post-adjustment of the finite element model parameters, which is insufficient for effective construction guidance. To address this issue, this paper proposes an on-site prediction method for the hydration heat of mass concrete based on the semi-adiabatic method. A self-made, simple hydration heat testing device is used to determine the adiabatic temperature rise curve of concrete with the actual mix proportions. By deriving a corrected heat source function model and integrating a time-varying thermal conductivity function model calibrated in the laboratory during the cement hydration process, the finite element analysis model is adjusted to better align with real conditions and closely match the measured hydration heat data. Analysis of measured data from practical engineering cases and finite element simulation results demonstrates that this method effectively reduces the error between simulated and measured data. It provides more reliable guidance for on-site construction and is significant for controlling temperature-induced stress cracks in mass concrete due to hydration heat.

References

[1]  朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 1999.
[2]  高原, 张君, 罗孙一鸣. 基于水泥水化度的混凝土早期力学性能发展预测[J]. 工程力学, 2013, 30(10): 8.
[3]  王彦丹, 李宗利. 考虑温度效应的界面层对混凝土热学参数影响分析[J]. 混凝土, 2021(2): 37-41.
[4]  Tang, S., Tang, C., Liang, Z., Zhang, Y. and Li, L. (2012) Numerical Study of the Influence of Material Structure on Effective Thermal Conductivity of Concrete. Heat Transfer Engineering, 33, 732-747.
https://doi.org/10.1080/01457632.2011.635988
[5]  赵育. 高导热性混凝土细观数值模拟与工程应用[D]: [硕士学位论文]. 西安: 长安大学, 2017.
[6]  李守巨, 范永思, 张德岗, 刘迎曦. 岩土材料导热系数与孔隙率关系的数值模拟分析[J]. 岩土力学, 2007, 28(S1): 244-248.
[7]  Lu, X., Tong, F., Liu, G. and Guan, J. (2021) Model for Predicting the Thermal Conductivity of Concrete. International Journal of Thermophysics, 42, Article No. 34.
https://doi.org/10.1007/s10765-020-02786-6
[8]  Tang, S.W., Chen, E., Shao, H.Y. and Li, Z.J. (2015) A Fractal Approach to Determine Thermal Conductivity in Cement Pastes. Construction and Building Materials, 74, 73-82.
https://doi.org/10.1016/j.conbuildmat.2014.10.016
[9]  舒小娟, 宋健, 沈明燕, 等. 一种现场大体积混凝土水化热温度预测系统及方法[P]. 中国专利, CN202211013829.6. 2023-04-18.
[10]  王成文, 王瑞和, 陈二丁, 彭志刚, 步玉环. 锂盐早强剂改善油井水泥的低温性能及其作用机理[J]. 石油学报, 2011, 32(1): 140-144.
[11]  张子明, 宋智通, 黄海燕. 混凝土绝热温升和热传导方程的新理论[J]. 河海大学学报(自然科学版), 2002, 30(3): 1-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133