全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GAS-CE-LGBM的“一带一路”指数收益率预测研究
Research on the Yield Prediction of the “Belt and Road” Index Based on GAS-CE-LGBM

DOI: 10.12677/sa.2024.134144, PP. 1431-1441

Keywords: GAS,LightGBM,Copula熵,“一带一路”
GAS
, LightGBM, Copula Entropy, “Belt and Road”

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究“一带一路”指数收益率有助于投资者和政策制定者更好地理解和规划“一带一路”倡议相关的金融市场趋势,以支持有效的投资决策和制定经济政策,但由于其复杂性和非线性特征,传统的预测方法可能无法充分捕捉其动态变化。为了解决这一问题,本文提出了一种结合广义自回归得分(Generalized Autoregressive Score, GAS)模型、Copula熵(Copula Entropy, CE)特征选择和监督学习集成模型——轻量梯度提升机(Light Gradient Boosting Machine, LightGBM)模型的综合预测框架(Generalized Autoregressive Score-Copula Entropy-Light Gradient Boosting Machine, GAS-CE-LGBM)。首先,构建“一带一路”指数收益率的GAS波动率模型并估计参数;其次,计算“一带一路”指数及其成分股相应的Copula熵,并通过阈值进行筛选;最后,将所得成分股信息与GAS模型参数构成数据集输入LightGBM模型中建模预测。实验结果表明,GAS-CE-LGBM模型相较多层感知器神经网络(Multilayer Perceptron, MLP)、LightGBM、GARCH-LGBM (Generalized Autoregressive Conditional Heteroskedasticity-Light Gradient Boosting Machine)和GAS-LGBM (Generalized Autoregressive Score-Light Gradient Boosting Machine)模型在RMSE、MAE、MAPE和R2四个评估指标上表现最佳,RMSE、MAE和MAPE分别平均降低了19.09%、19.81%、62.48%,R2平均提高了12.05%。这表明该模型在“一带一路”指数的预测方面展现了良好的性能和潜力,能更好地捕捉到“一带一路”指数收益率的动态变化。
Studying the returns of the “Belt and Road” index contributes to a better understanding and planning for investors and policymakers regarding the financial market trends associated with the “Belt and Road” Initiative. This understanding supports effective investment decisions and economic policy formulation. However, due to its complexity and non-linear characteristics, traditional forecasting methods might not adequately capture its dynamic changes. To address this issue, this paper proposes a comprehensive predictive framework, the Generalized Autoregressive Score-Copula Entropy-Light Gradient Boosting Machine (GAS-CE-LGBM) model, which combines the Generalized Autoregressive Score (GAS) model, Copula Entropy (CE) feature selection and supervised learning ensemble model—Light Gradient Boosting Machine (LightGBM). First, build the volatility GAS model of the return rate of the “Belt and Road” index and estimate the parameters. Secondly, calculate the corresponding Copula entropy of the “Belt and Road” index and its constituent stocks and filter through the threshold. Finally, input the data set of constituent stock information and GAS model parameters into the LightGBM model for modeling and forecasting. Experimental results demonstrate that the GAS-CE-LGBM model outperforms Multilayer Perceptron (MLP), LightGBM, GARCH-LGBM (Generalized Autoregressive Conditional Heteroskedasticity-Light Gradient Boosting Machine), and GAS-LGBM (Generalized

References

[1]  Creal, D., Koopman, S.J. and Lucas, A. (2012) Generalized Autoregressive Score Models with Applications. Journal of Applied Econometrics, 28, 777-795.
https://doi.org/10.1002/jae.1279
[2]  De Lira Salvatierra, I. and Patton, A.J. (2015) Dynamic Copula Models and High Frequency Data. Journal of Empirical Finance, 30, 120-135.
https://doi.org/10.1016/j.jempfin.2014.11.008
[3]  王天一, 黄卓. Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报, 2015, 18(5): 79-86.
[4]  沈根祥, 邹欣悦. 已实现波动GAS-HEAVY模型及其实证研究[J]. 中国管理科学, 2019, 27(1): 1-10.
[5]  潘琛. LightGBM算法在短期股票的应用研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2022.
[6]  牛晓楠. 基于LSTM-LightGBM组合模型的沪深300股指期货价格预测[D]: [硕士学位论文]. 武汉: 中南财经政法大学, 2022.
[7]  曾海潇. 基于LightGBM-GRU的新能源股票价格预测模型[D]: [硕士学位论文]. 重庆: 西南大学, 2023.
[8]  Kim, H.Y. and Won, C.H. (2018) Forecasting the Volatility of Stock Price Index: A Hybrid Model Integrating LSTM with Multiple GARCH-Type Models. Expert Systems with Applications, 103, 25-37.
https://doi.org/10.1016/j.eswa.2018.03.002
[9]  宁苡鹤. 基于相关性的股票价格预测模型研究[D]: [硕士学位论文]. 北京: 北京邮电大学, 2018.
[10]  Zeng, H., Shao, B., Bian, G., Dai, H. and Zhou, F. (2022) A Hybrid Deep Learning Approach by Integrating Extreme Gradient Boosting‐Long Short‐Term Memory with Generalized Autoregressive Conditional Heteroscedasticity Family Models for Natural Gas Load Volatility Prediction. Energy Science & Engineering, 10, 1998-2021.
https://doi.org/10.1002/ese3.1122
[11]  李筱艺, 王传美. 基于GAS-Copula-XGBoost的预测建模及应用研究[J]. 重庆理工大学学(自然科学), 2022, 36(6): 291-301.
[12]  Ma, J. and Sun, Z. (2011) Mutual Information Is Copula Entropy. Tsinghua Science and Technology, 16, 51-54.
https://doi.org/10.1016/s1007-0214(11)70008-6
[13]  马健. 基于Copula熵的变量选择[J]. 应用概率统计(英文版), 2021, 37(4): 405-420.
[14]  陈璐, 叶磊, 卢韦伟, 等. 基于Copula熵的神经网络径流预报模型预报因子选择[J]. 水力发电学报, 2014, 33(6): 25-29, 60.
[15]  陈燕璇, 刘合香, 倪增华. 基于Copula熵因子选取的PSO-ELM台风灾情预测模型[J]. 气象研究与应用, 2019, 40(2): 7-11, 55.
[16]  Mesiar, R. and Sheikhi, A. (2021) Nonlinear Random Forest Classification, a Copula-Based Approach. Applied Sciences, 11, Article 7140.
https://doi.org/10.3390/app11157140
[17]  李艳玲, 巩雅杰. 基于驱动分析的LSTM干旱预测模型研究[J]. 数学的实践与认识, 2022, 52(5): 92-102.
[18]  Liu, P., Han, S., Rong, N. and Fan, J. (2022) Frequency Stability Prediction of Power Systems Using Vision Transformer and Copula Entropy. Entropy, 24, Article 1165.
https://doi.org/10.3390/e24081165
[19]  Xiong, X. and Qing, G. (2023) A Hybrid Day-Ahead Electricity Price Forecasting Framework Based on Time Series. Energy, 264, Article ID: 126099.
https://doi.org/10.1016/j.energy.2022.126099
[20]  Zeng, H., Shao, B., Dai, H., Yan, Y. and Tian, N. (2023) Prediction of Fluctuation Loads Based on GARCH Family-CatBoost-CNNLSTM. Energy, 263, Article ID: 126125.
https://doi.org/10.1016/j.energy.2022.126125

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133