全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学探究半夏厚朴汤治疗慢性咽炎的作用机制
To Explore the Mechanism of Pinellia Magnolia Decoction in Treating Chronic Pharyngitis Based on Network Pharmacology

DOI: 10.12677/tcm.2024.138311, PP. 2073-2083

Keywords: 半夏厚朴汤,慢性咽炎,网络药理学,分子机制,靶点
Pinellia Sinensis Soup
, Chronic Pharyngitis, Network Pharmacology, Molecular Mechanism, Target

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:基于网络药理学方法探究半夏厚朴汤治疗慢性咽炎的作用机制。方法:通过TCMSP (中药系统药理学技术平台)数据库获取“半夏”、“厚朴”、“紫苏”、“茯苓”和“生姜”的主要化学成分,根据ADME筛选出其活性成分及作用靶点,并上传Cytoscape 3.7.2软件构建“药物–成分–靶点网络”。同时通过Gencards、OMIM和DRUGBANK数据库获取慢性咽炎的主要靶点,用在线数据分析作图网站制作Venn图,并将所得交集靶点导入Cytoscape 3.8.2构建“药物–有效成分–靶点–疾病”网络。然后运用STRING数据库绘制蛋白互作(PPI)网络,结果导入Cytoscape软件3.8.2进行网络拓扑分析。最后利用Matescape数据库对交集靶点进行GO功能、KEGG通路富集分析,采用Cytoscape3.8.2构建“靶点–通路”网络。结果:筛选出半夏厚朴汤有效化学成分44个,对应靶点157个,慢性咽炎靶点1288个,半夏厚朴汤慢性咽炎交集靶点85个。分析得半夏厚朴汤治疗慢性咽炎的重要活性成分主要是木犀草素、β-谷甾醇、豆甾醇、黄芩、宽松、卡维定、桉油醇、黄芩苷、塞雷维甾醇,TP53、AKT1、JUN、CASP3、TNF、EGFR、IL6等。GO功能富集分析得到2479项结果,其中BP 2249项,MF 129项、CC 101项。KEGG通路分析得到177条信号通路。结论:半夏厚朴汤治疗慢性咽炎的多成分、多靶点、多通路的作用机制,为治疗慢性咽炎提供了网络药理学依据。
Objective: Based on the method of network pharmacology to explore the mechanism of Banxia Houpu decoction in the treatment of chronic pharyngitis. Methods: The main chemical components of Pinellia pinellia, Magnolia officinalis, Perilla, Poria cocos and ginger were obtained from TCMSP database, and the active components and target sites were selected based on ADME, and the drug-composition-target network was constructed by uploaded Cytoscape 3.7.2 software. Meanwhile, major targets of chronic pharyngitis were obtained from Gencards, OMIM and DRUGBANK databases, and Venn diagram was prepared using online data analysis and mapping website. The obtained intersection targets were imported into Cytoscape 3.8.2 to build a “drug-activity-target-disease” network. Then the STRING database is used to draw the PPI network. The results were imported into Cytoscape software 3.8.2 for network topology analysis. Finally, GO function and KEGG pathway enrichment analysis were conducted on the intersection target using Matescape database, and Cytoscape3.8.2 was used to construct the “target-pathway” network. Results: 44 effective chemical components of Pinxia Houpu decoction were screened, 157 corresponding targets, 1288 chronic pharyngitis targets, 85 chronic pharyngitis intersection targets of Pinxia Houpu decoction. Analysis showed that the main active ingredients of Pinellia Houpu decoction for chronic pharyngitis were luteolin, β-sitosterol, stigmasterol, baicalin, carvetin, cineolitol, baicalin, serevisterol, TP53, AKT1, JUN, CASP3, TNF, EGFR, IL6, etc. GO functional enrichment analysis obtained 2479

References

[1]  朱晓燕. 超声雾化吸入治疗慢性喉炎实施优质护理服务的效果[J]. 中国医学文摘(耳鼻咽喉科学), 2023, 38(6): 153-155+138.
[2]  郭防, 王麒. 中药天竺雾化剂治疗慢性咽炎的临床观察研究[J]. 中医临床研究, 2021, 13(1): 76-79.
[3]  田同儒, 李柏. 清咽代茶饮治疗慢性咽炎的临床观察[J]. 中国中医药现代远程教育, 2021, 19(2): 130-131.
[4]  汤细希. 半夏厚朴汤治疗慢性咽炎患者的有效性研究[J]. 中医临床研究, 2021, 13(11): 117-120.
[5]  章萤. 半夏厚朴汤治疗慢性咽炎的临床价值分析[J]. 现代医学与健康研究电子杂志, 2018, 2(5): 153-154.
[6]  张明发, 沈雅琴. 厚朴提取物及其有效成分的呼吸系统药理作用研究进展[J]. 药物评价研究, 2024, 47(4): 904-913.
[7]  黄兴琳, 杨泽荣, 李林哲, 等. 基于茯苓菌核的三种药材的化学成分及药理研究进展[J/OL]. 中华中医药学刊, 1-39.
http://kns.cnki.net/kcms/detail/21.1546.r.20240703.1728.006.html, 2024-08-20.
[8]  郑喻丰, 王梦媛, 柳越, 等. 紫苏叶中生物活性成分药理作用研究进展[J]. 农产品加工, 2023(22): 76-79+85.
[9]  陈芬, 袁飞飞, 李伟, 等. 大黄素调节AMPK/TXNIP/NLRP3信号通路对子痫前期大鼠炎症反应的影响[J]. 中国临床药理学杂志, 2024, 40(14): 2068-2072.
[10]  林昶, 杨长福, 杨红梅, 等. 半夏厚朴汤的现代药理研究进展[J]. 贵阳中医学院学报, 2016, 38(6): 92-95, 99.
[11]  王超, 连振清, 杜铖豪, 等. 基于网络药理学和分子对接技术探讨健脾益肾化痰方对肺癌的作用机制[J]. 云南民族大学学报(自然科学版), 2023, 32(6): 708-716.
[12]  刘畅, 张慧月, 聂晶, 等. 基于网络药理学的鼻渊通窍颗粒治疗过敏性鼻炎的分子机制研究[J]. 世界中医药, 2022, 17(12): 1658-1665.
[13]  靳红玉, 杨才德. 手卡指压式星状神经节埋线术治疗慢性咽炎概述[C]. 2022年中国针灸学会年会论文集. 2022: 47-49.
[14]  薛晓明, 荆旭峰. 慢性咽炎的临床诊治浅析[J]. 中医临床研究, 2021, 13(21): 74-76.
[15]  郭彦芳, 董秀芳, 王瑜龙, 等. 木犀草素抑制HIF-1α/NLRP3信号通路对脑卒中大鼠认知障碍和神经细胞凋亡的影响[J]. 热带医学杂志, 2022, 22(9): 1196-1202, 1325.
[16]  刘涛, 韩淑英. 木犀草素、黄芩素和槲皮素单体配伍复方的优化及抗慢性咽炎作用[J]. 科技视界, 2015(9): 22, 84.
[17]  张津浩, 邓鑫, 王嘉惠, 等. 白花蛇舌草治疗肝癌的研究进展[J]. 湖南中医杂志, 2024, 40(6): 210-214.
[18]  Liao, P., Lai, M., Hsu, K., Kuo, Y., Chen, J., Tsai, M., et al. (2018) Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. Journal of Agricultural and Food Chemistry, 66, 10748-10759.
https://doi.org/10.1021/acs.jafc.8b04555
[19]  Nirmal, S.A., Pal, S.C., Mandal, S.C. and Patil, A.N. (2011) Analgesic and Anti-Inflammatory Activity of β-Sitosterol Isolated from Nyctanthes arbortristis Leaves. Inflammopharmacology, 20, 219-224.
https://doi.org/10.1007/s10787-011-0110-8
[20]  周志远, 卢群, 刘洋, 等. 豆甾醇的研究及开发进展[J]. 中国当代医药, 2015, 22(24): 15-17.
[21]  Ahmad Khan, M., Sarwar, A.H.M.G., Rahat, R., Ahmed, R.S. and Umar, S. (2020) Stigmasterol Protects Rats from Collagen Induced Arthritis by Inhibiting Proinflammatory Cytokines. International Immunopharmacology, 85, Article 106642.
https://doi.org/10.1016/j.intimp.2020.106642
[22]  Jie, F., Yang, X., Yang, B., Liu, Y., Wu, L. and Lu, B. (2022) Stigmasterol Attenuates Inflammatory Response of Microglia via NF-κB and NLRP3 Signaling by AMPK Activation. Biomedicine & Pharmacotherapy, 153, Article 113317.
https://doi.org/10.1016/j.biopha.2022.113317
[23]  Ham, S.W., Jeon, H., Jin, X., Kim, E., Kim, J., Shin, Y.J., et al. (2018) TP53 Gain-of-Function Mutation Promotes Inflammation in Glioblastoma. Cell Death & Differentiation, 26, 409-425.
https://doi.org/10.1038/s41418-018-0126-3
[24]  Jia, A., Wang, Y., Wang, Y., Li, Y., Yang, Q., Cao, Y., et al. (2021) The Kinase AKT1 Potentiates the Suppressive Functions of Myeloid-Derived Suppressor Cells in Inflammation and Cancer. Cellular & Molecular Immunology, 18, 1074-1076.
https://doi.org/10.1038/s41423-020-00610-7
[25]  Raivich, G. (2008) C‐Jun Expression, Activation and Function in Neural Cell Death, Inflammation and Repair. Journal of Neurochemistry, 107, 898-906.
https://doi.org/10.1111/j.1471-4159.2008.05684.x
[26]  Yang, B., Hosgood, S.A., Bagul, A., Waller, H.L. and Nicholson, M.L. (2011) Erythropoietin Regulates Apoptosis, Inflammation and Tissue Remodelling via Caspase-3 and Il-1β in Isolated Hemoperfused Kidneys. European Journal of Pharmacology, 660, 420-430.
https://doi.org/10.1016/j.ejphar.2011.03.044
[27]  Choksi, S., Choudhary, G. and Liu, Z. (2020) Transition from TNF-Induced Inflammation to Death Signaling. In: Bayry, J., Ed., The TNF Superfamily, Springer, 73-80.
https://doi.org/10.1007/978-1-0716-1130-2_5
[28]  王玉娇, 李思玉, 李俊雄, 等. 白藜芦醇通过PI3K/AKT信号通路抑制脂多糖诱导的人牙龈成纤维细胞炎症[J]. 川北医学院学报, 2022, 37(5): 561-566.
[29]  Beringer, A., Noack, M. and Miossec, P. (2016) IL-17 in Chronic Inflammation: From Discovery to Targeting. Trends in Molecular Medicine, 22, 230-241.
https://doi.org/10.1016/j.molmed.2016.01.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133