全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Docking of Human Band 3 Anion Transporter Proteins with Their Plasmodium falciparum Interactors Based on Short Linear Motifs

DOI: 10.4236/ajmb.2024.144014, PP. 187-200

Keywords: Malaria, Protein-Protein Docking, Protein-Protein Interaction, Short Linear Motifs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3AT) protein is considered the main invasive pathway for the parasite in erythrocytes that causes clinical symptoms for malaria in humans. The interactions between P. falciparum parasites and erythrocytes along this receptor have previously been explored. Short linear motifs (SLIMs) are short linear mediator sequences that involve several biological processes, acting as mediators of protein interactions identifiable by computational tools such as SLiMFinder. For a given protein, the identification of SLIMs allows predicting its interactors. Using the SLIMs approach, protein-protein interaction network analyses between P. falciparum and its human host, were used to identify a tryptophan-rich protein, A5K5E5_PLAVS as an essential interactor of B3AT. To better understand the interaction mechanism, a guided protein-protein docking approach based on SLIM motifs was performed for human B3AT and A5K5E5_PLAVS. The highlights of this important interaction between P. falciparum and its human host have the potential to pave the way to identify new therapeutic candidates.

References

[1]  World Health Organization (2021) World Malaria Report 2021.
https://apps.who.int/iris/handle/10665/350147
[2]  OMS|Le rapport de cette année en un clin d’oeil. WHO.
[3]  World Health Organization (2020) World Malaria Report 2020 20 Years of Global Progress and Challenges.
[4]  Almukadi, H., Schwake, C., Kaiser, M.M., Mayer, D.C.G., Schiemer, J., Baldwin, M.R., et al. (2019) Human Erythrocyte Band 3 Is a Host Receptor for Plasmodium falciparum Glutamic Acid-Rich Protein. Blood, 133, 470-480.
https://doi.org/10.1182/blood-2018-07-865451
[5]  Cusick, M.F., Libbey, J.E. and Fujinami, R.S. (2011) Molecular Mimicry as a Mechanism of Autoimmune Disease. Clinical Reviews in Allergy & Immunology, 42, 102-111.
https://doi.org/10.1007/s12016-011-8294-7
[6]  Krezanoski, P. (2016) Delivering Insecticide-Treated Nets for Malaria Prevention: Innovative Strategies. Research and Reports in Tropical Medicine, 7, 39-47.
https://doi.org/10.2147/rrtm.s83173
[7]  World Health Organization (2015) World Malaria Report 2015.
https://iris.who.int/handle/10665/200018
[8]  Chulanetra, M. and Chaicumpa, W. (2021) Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 702125.
https://doi.org/10.3389/fcimb.2021.702125
[9]  Via, A., Uyar, B., Brun, C. and Zanzoni, A. (2015) How Pathogens Use Linear Motifs to Perturb Host Cell Networks. Trends in Biochemical Sciences, 40, 36-48.
https://doi.org/10.1016/j.tibs.2014.11.001
[10]  Pierrott, C. (2012) Inhibition of Protein-Protein Interactions in Plasmodium falciparum: Future Drug Targets. Current Pharmaceutical Design, 18, 3522-3530.
https://doi.org/10.2174/138161212801327329
[11]  Martin, R.E. (2004) The Malaria Parasite’s Chloroquine Resistance Transporter Is a Member of the Drug/Metabolite Transporter Superfamily. Molecular Biology and Evolution, 21, 1938-1949.
https://doi.org/10.1093/molbev/msh205
[12]  Band 3, the Human Red Cell Chloride/Bicarbonate Anion Exchanger (AE1, SLC4A1), in a Structural Context|Elsevier Enhanced Reader.
https://pubmed.ncbi.nlm.nih.gov/27058983/
[13]  Barneaud-Rocca, D., Etchebest, C. and Guizouarn, H. (2013) Structural Model of the Anion Exchanger 1 (SLC4A1) and Identification of Transmembrane Segments Forming the Transport Site. Journal of Biological Chemistry, 288, 26372-26384.
https://doi.org/10.1074/jbc.m113.465989
[14]  Winograd, E., Eda, S. and Sherman, I.W. (2004) Chemical Modifications of Band 3 Protein Affect the Adhesion of Plasmodium falciparum-Infected Erythrocytes to Cd36. Molecular and Biochemical Parasitology, 136, 243-248.
https://doi.org/10.1016/j.molbiopara.2004.04.005
[15]  Prieto, C. and De Las Rivas, J. (2006) APID: Agile Protein Interaction Dataanalyzer. Nucleic Acids Research, 34, W298-W302.
https://doi.org/10.1093/nar/gkl128
[16]  Davey, N.E., Haslam, N.J., Shields, D.C. and Edwards, R.J. (2010) SLiMFinder: A Web Server to Find Novel, Significantly Over-Represented, Short Protein Motifs. Nucleic Acids Research, 38, W534-W539.
https://doi.org/10.1093/nar/gkq440
[17]  The UniProt Consortium (2018) UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Research, 47, D506-D515.
https://doi.org/10.1093/nar/gky1049
[18]  Arakawa, T., Kobayashi-Yurugi, T., Alguel, Y., Iwanari, H., Hatae, H., Iwata, M., et al. (2015) Crystal Structure of the Anion Exchanger Domain of Human Erythrocyte Band 3. Science, 350, 680-684.
https://doi.org/10.1126/science.aaa4335
[19]  Chen, Y.W. and Yiu, C.-P.B. (2021) Structural Genomics: General Applications. Methods in Molecular Biology, Vol. 2199. Springer US.
[20]  MODELLER Runfile as a Python Script. The Template Files|Open-I.
https://openi.nlm.nih.gov/detailedresult?img=PMC5113899_pone.0164047.g004&req=4
[21]  Schrödinger, LLC (2015) The AxPyMOL Molecular Graphics Plugin for Microsoft PowerPoint, Version 1.8.
[22]  Dominguez, C., Boelens, R. and Bonvin, A.M.J.J. (2003) HADDOCK: A Protein-Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society, 125, 1731-1737.
https://doi.org/10.1021/ja026939x
[23]  Spiliotopoulos, D., Kastritis, P.L., Melquiond, A.S.J., Bonvin, A.M.J.J., Musco, G., Rocchia, W., et al. (2016) dMM-PBSA: A New HADDOCK Scoring Function for Protein-Peptide Docking. Frontiers in Molecular Biosciences, 3, Article No. 46.
https://doi.org/10.3389/fmolb.2016.00046
[24]  Tanner, M.J.A. (1997) The Structure and Function of Band 3 (AE1): Recent Developments (Review). Molecular Membrane Biology, 14, 155-165.
https://doi.org/10.3109/09687689709048178
[25]  Yates, A.D., et al. (2019) Ensembl 2020. Nucleic Acids Research, 48, D682-D688.
[26]  Hsu, K. (2018) Exploring the Potential Roles of Band 3 and Aquaporin-1 in Blood CO2 Transport-Inspired by Comparative Studies of Glycophorin B-A-B Hybrid Protein GP.Mur. Frontiers in Physiology, 9, Article No. 733.
https://doi.org/10.3389/fphys.2018.00733
[27]  Dholakia, N., Dhandhukia, P. and Roy, N. (2015) Screening of Potential Targets in Plasmodium falciparum Using Stage-Specific Metabolic Network Analysis. Molecular Diversity, 19, 991-1002.
https://doi.org/10.1007/s11030-015-9632-0
[28]  Damian, R.T. (1964) Molecular Mimicry: Antigen Sharing by Parasite and Host and Its Consequences. The American Naturalist, 98, 129-149.
https://doi.org/10.1086/282313
[29]  Schrödinger, LLC (2015) The PyMOL Molecular Graphics System, Version 1.8.
[30]  De Meulenaere, K., Prajapati, S.K., Villasis, E., Cuypers, B., Kattenberg, J.H., Kasian, B., et al. (2022) Band 3-Mediated Plasmodium Vivax Invasion Is Associated with Transcriptional Variation in PvTRAg Genes. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 1011692.
https://doi.org/10.3389/fcimb.2022.1011692
[31]  Molina-Franky, J., Patarroyo, M.E., Kalkum, M. and Patarroyo, M.A. (2022) The Cellular and Molecular Interaction between Erythrocytes and Plasmodium falciparum Merozoites. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 816574.
https://doi.org/10.3389/fcimb.2022.816574
[32]  Deroost, K., Pham, T., Opdenakker, G. and Van den Steen, P.E. (2015) The Immunological Balance between Host and Parasite in Malaria. FEMS Microbiology Reviews, 40, 208-257.
https://doi.org/10.1093/femsre/fuv046
[33]  Wang, B., Lu, F., Cheng, Y., Chen, J., Jeon, H., Ha, K., et al. (2015) Immunoprofiling of the Tryptophan-Rich Antigen Family in Plasmodium Vivax. Infection and Immunity, 83, 3083-3095.
https://doi.org/10.1128/iai.03067-14
[34]  He, Q., Li, D., Xu, Q. and Zheng, S. (2012) Predicted Essential Proteins of Plasmodium falciparum for Potential Drug Targets. Asian Pacific Journal of Tropical Medicine, 5, 352-354.
https://doi.org/10.1016/s1995-7645(12)60057-1
[35]  Wildner, G. and Diedrichs-Möhring, M. (2020) Molecular Mimicry and Uveitis. Frontiers in Immunology, 11, Article ID: 580636.
https://doi.org/10.3389/fimmu.2020.580636
[36]  Shibeshi, M.A., Kifle, Z.D. and Atnafie, S.A. (2020) antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. Infection and Drug Resistance, 13, 4047-4060.
https://doi.org/10.2147/idr.s279433
[37]  Bora, H., Garg, S., Sen, P., Kumar, D., Kaur, P., Khan, R.H., et al. (2011) Plasmodium Vivax Tryptophan-Rich Antigen Pvtrag33.5 Contains Alpha Helical Structure and Multidomain Architecture. PLOS ONE, 6, e16294.
https://doi.org/10.1371/journal.pone.0016294
[38]  Van Roey, K., Uyar, B., Weatheritt, R.J., Dinkel, H., Seiler, M., Budd, A., et al. (2014) Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chemical Reviews, 114, 6733-6778.
https://doi.org/10.1021/cr400585q
[39]  White, N.J. (2004) Antimalarial Drug Resistance. Journal of Clinical Investigation, 113, 1084-1092.
https://doi.org/10.1172/jci200421682

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133