Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3AT) protein is considered the main invasive pathway for the parasite in erythrocytes that causes clinical symptoms for malaria in humans. The interactions between P. falciparum parasites and erythrocytes along this receptor have previously been explored. Short linear motifs (SLIMs) are short linear mediator sequences that involve several biological processes, acting as mediators of protein interactions identifiable by computational tools such as SLiMFinder. For a given protein, the identification of SLIMs allows predicting its interactors. Using the SLIMs approach, protein-protein interaction network analyses between P. falciparum and its human host, were used to identify a tryptophan-rich protein, A5K5E5_PLAVS as an essential interactor of B3AT. To better understand the interaction mechanism, a guided protein-protein docking approach based on SLIM motifs was performed for human B3AT and A5K5E5_PLAVS. The highlights of this important interaction between P. falciparum and its human host have the potential to pave the way to identify new therapeutic candidates.
References
[1]
World Health Organization (2021) World Malaria Report 2021. https://apps.who.int/iris/handle/10665/350147
[2]
OMS|Le rapport de cette année en un clin d’oeil. WHO.
[3]
World Health Organization (2020) World Malaria Report 2020 20 Years of Global Progress and Challenges.
[4]
Almukadi, H., Schwake, C., Kaiser, M.M., Mayer, D.C.G., Schiemer, J., Baldwin, M.R., et al. (2019) Human Erythrocyte Band 3 Is a Host Receptor for Plasmodium falciparum Glutamic Acid-Rich Protein. Blood, 133, 470-480. https://doi.org/10.1182/blood-2018-07-865451
[5]
Cusick, M.F., Libbey, J.E. and Fujinami, R.S. (2011) Molecular Mimicry as a Mechanism of Autoimmune Disease. Clinical Reviews in Allergy & Immunology, 42, 102-111. https://doi.org/10.1007/s12016-011-8294-7
[6]
Krezanoski, P. (2016) Delivering Insecticide-Treated Nets for Malaria Prevention: Innovative Strategies. Research and Reports in Tropical Medicine, 7, 39-47. https://doi.org/10.2147/rrtm.s83173
[7]
World Health Organization (2015) World Malaria Report 2015. https://iris.who.int/handle/10665/200018
[8]
Chulanetra, M. and Chaicumpa, W. (2021) Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. FrontiersinCellularandInfectionMicrobiology, 11, Article ID: 702125. https://doi.org/10.3389/fcimb.2021.702125
[9]
Via, A., Uyar, B., Brun, C. and Zanzoni, A. (2015) How Pathogens Use Linear Motifs to Perturb Host Cell Networks. Trends in Biochemical Sciences, 40, 36-48. https://doi.org/10.1016/j.tibs.2014.11.001
[10]
Pierrott, C. (2012) Inhibition of Protein-Protein Interactions in Plasmodium falciparum: Future Drug Targets. Current Pharmaceutical Design, 18, 3522-3530. https://doi.org/10.2174/138161212801327329
[11]
Martin, R.E. (2004) The Malaria Parasite’s Chloroquine Resistance Transporter Is a Member of the Drug/Metabolite Transporter Superfamily. Molecular Biology and Evolution, 21, 1938-1949. https://doi.org/10.1093/molbev/msh205
[12]
Band 3, the Human Red Cell Chloride/Bicarbonate Anion Exchanger (AE1, SLC4A1), in a Structural Context|Elsevier Enhanced Reader. https://pubmed.ncbi.nlm.nih.gov/27058983/
[13]
Barneaud-Rocca, D., Etchebest, C. and Guizouarn, H. (2013) Structural Model of the Anion Exchanger 1 (SLC4A1) and Identification of Transmembrane Segments Forming the Transport Site. JournalofBiologicalChemistry, 288, 26372-26384. https://doi.org/10.1074/jbc.m113.465989
[14]
Winograd, E., Eda, S. and Sherman, I.W. (2004) Chemical Modifications of Band 3 Protein Affect the Adhesion of Plasmodium falciparum-Infected Erythrocytes to Cd36. MolecularandBiochemicalParasitology, 136, 243-248. https://doi.org/10.1016/j.molbiopara.2004.04.005
[15]
Prieto, C. and De Las Rivas, J. (2006) APID: Agile Protein Interaction Dataanalyzer. NucleicAcidsResearch, 34, W298-W302. https://doi.org/10.1093/nar/gkl128
[16]
Davey, N.E., Haslam, N.J., Shields, D.C. and Edwards, R.J. (2010) SLiMFinder: A Web Server to Find Novel, Significantly Over-Represented, Short Protein Motifs. Nucleic Acids Research, 38, W534-W539. https://doi.org/10.1093/nar/gkq440
[17]
The UniProt Consortium (2018) UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Research, 47, D506-D515. https://doi.org/10.1093/nar/gky1049
[18]
Arakawa, T., Kobayashi-Yurugi, T., Alguel, Y., Iwanari, H., Hatae, H., Iwata, M., et al. (2015) Crystal Structure of the Anion Exchanger Domain of Human Erythrocyte Band 3. Science, 350, 680-684. https://doi.org/10.1126/science.aaa4335
[19]
Chen, Y.W. and Yiu, C.-P.B. (2021) Structural Genomics: General Applications. Methods in Molecular Biology, Vol. 2199. Springer US.
[20]
MODELLER Runfile as a Python Script. The Template Files|Open-I. https://openi.nlm.nih.gov/detailedresult?img=PMC5113899_pone.0164047.g004&req=4
[21]
Schrödinger, LLC (2015) The AxPyMOL Molecular Graphics Plugin for Microsoft PowerPoint, Version 1.8.
[22]
Dominguez, C., Boelens, R. and Bonvin, A.M.J.J. (2003) HADDOCK: A Protein-Protein Docking Approach Based on Biochemical or Biophysical Information. JournaloftheAmericanChemicalSociety, 125, 1731-1737. https://doi.org/10.1021/ja026939x
[23]
Spiliotopoulos, D., Kastritis, P.L., Melquiond, A.S.J., Bonvin, A.M.J.J., Musco, G., Rocchia, W., et al. (2016) dMM-PBSA: A New HADDOCK Scoring Function for Protein-Peptide Docking. FrontiersinMolecularBiosciences, 3, Article No. 46. https://doi.org/10.3389/fmolb.2016.00046
[24]
Tanner, M.J.A. (1997) The Structure and Function of Band 3 (AE1): Recent Developments (Review). MolecularMembraneBiology, 14, 155-165. https://doi.org/10.3109/09687689709048178
Hsu, K. (2018) Exploring the Potential Roles of Band 3 and Aquaporin-1 in Blood CO2 Transport-Inspired by Comparative Studies of Glycophorin B-A-B Hybrid Protein GP.Mur. FrontiersinPhysiology, 9, Article No. 733. https://doi.org/10.3389/fphys.2018.00733
[27]
Dholakia, N., Dhandhukia, P. and Roy, N. (2015) Screening of Potential Targets in Plasmodium falciparum Using Stage-Specific Metabolic Network Analysis. MolecularDiversity, 19, 991-1002. https://doi.org/10.1007/s11030-015-9632-0
[28]
Damian, R.T. (1964) Molecular Mimicry: Antigen Sharing by Parasite and Host and Its Consequences. TheAmericanNaturalist, 98, 129-149. https://doi.org/10.1086/282313
[29]
Schrödinger, LLC (2015) The PyMOL Molecular Graphics System, Version 1.8.
[30]
De Meulenaere, K., Prajapati, S.K., Villasis, E., Cuypers, B., Kattenberg, J.H., Kasian, B., et al. (2022) Band 3-Mediated Plasmodium Vivax Invasion Is Associated with Transcriptional Variation in PvTRAg Genes. FrontiersinCellularandInfectionMicrobiology, 12, Article ID: 1011692. https://doi.org/10.3389/fcimb.2022.1011692
[31]
Molina-Franky, J., Patarroyo, M.E., Kalkum, M. and Patarroyo, M.A. (2022) The Cellular and Molecular Interaction between Erythrocytes and Plasmodium falciparum Merozoites. FrontiersinCellularandInfectionMicrobiology, 12, Article ID: 816574. https://doi.org/10.3389/fcimb.2022.816574
[32]
Deroost, K., Pham, T., Opdenakker, G. and Van den Steen, P.E. (2015) The Immunological Balance between Host and Parasite in Malaria. FEMSMicrobiologyReviews, 40, 208-257. https://doi.org/10.1093/femsre/fuv046
[33]
Wang, B., Lu, F., Cheng, Y., Chen, J., Jeon, H., Ha, K., et al. (2015) Immunoprofiling of the Tryptophan-Rich Antigen Family in Plasmodium Vivax. InfectionandImmunity, 83, 3083-3095. https://doi.org/10.1128/iai.03067-14
[34]
He, Q., Li, D., Xu, Q. and Zheng, S. (2012) Predicted Essential Proteins of Plasmodium falciparum for Potential Drug Targets. AsianPacificJournalofTropicalMedicine, 5, 352-354. https://doi.org/10.1016/s1995-7645(12)60057-1
[35]
Wildner, G. and Diedrichs-Möhring, M. (2020) Molecular Mimicry and Uveitis. FrontiersinImmunology, 11, Article ID: 580636. https://doi.org/10.3389/fimmu.2020.580636
[36]
Shibeshi, M.A., Kifle, Z.D. and Atnafie, S.A. (2020) antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. InfectionandDrugResistance, 13, 4047-4060. https://doi.org/10.2147/idr.s279433
[37]
Bora, H., Garg, S., Sen, P., Kumar, D., Kaur, P., Khan, R.H., et al. (2011) Plasmodium Vivax Tryptophan-Rich Antigen Pvtrag33.5 Contains Alpha Helical Structure and Multidomain Architecture. PLOS ONE, 6, e16294. https://doi.org/10.1371/journal.pone.0016294
[38]
Van Roey, K., Uyar, B., Weatheritt, R.J., Dinkel, H., Seiler, M., Budd, A., et al. (2014) Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. ChemicalReviews, 114, 6733-6778. https://doi.org/10.1021/cr400585q
[39]
White, N.J. (2004) Antimalarial Drug Resistance. JournalofClinicalInvestigation, 113, 1084-1092. https://doi.org/10.1172/jci200421682