全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Measurements of the Dark Matter Mass, Temperature and Spin

DOI: 10.4236/ijaa.2024.143012, PP. 184-202

Keywords: Warm Dark Matter, Dwarf Galaxies, Spiral Galaxies, Elliptical Galaxies, Galaxy Distributions, First Galaxies, Reionization

Full-Text   Cite this paper   Add to My Lib

Abstract:

We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles v hrms ( 1 ) . The most reliable determination of this parameter comes from well measured rotation curves of dwarf galaxies by the LITTLE THINGS collaboration: v hrms ( 1 )=406±69m/s . Complementary and consistent measurements are obtained from rotation curves of spiral galaxies measured by the SPARC collaboration, density runs of giant elliptical galaxies, galaxy ultra-violet luminosity distributions, galaxy stellar mass distributions, first galaxies, and reionization. Having measured v hrms ( 1 ) , we then embark on a journey to the past that leads to a consistent set of measured dark matter properties, including mass, temperature and spin.

References

[1]  Workman, R.L., et al. (2022) The Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2022, 083C01.
[2]  Hoeneisen, B. (2023) Understanding the Formation of Galaxies with Warm Dark Matter. Journal of Modern Physics, 14, 1741-1754.
https://doi.org/10.4236/jmp.2023.1413103
[3]  Hoeneisen, B. (2023) A Data Driven Solution to the Dark Matter Problem. Europe-an Journal of Applied Sciences, 11, 473-481.
https://doi.org/10.18272/aci.v15i1.2961
[4]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 12, 363-381.
https://doi.org/10.4236/ijaa.2022.124021
[5]  Hoeneisen, B. (2019) The Adiabatic Invariant of Dark Matter in Spiral Galaxies. International Journal of Astronomy and Astrophysics, 9, 355-367.
[6]  Hoeneisen, B. (2024) Understanding Elliptical Galaxies with Warm Dark Matter.
[7]  Hoeneisen, B. (2024) Are James Webb Space Telescope Observations Consistent with Warm Dark Matter? International Journal of Astronomy and Astrophysics, 14, 45-60.
https://doi.org/10.4236/ijaa.2024.141003
[8]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Galaxy Stellar Masses, UV Luminosities, and Reionization. International Journal of Astronomy and Astrophysics, 12, 258-272.
https://doi.org/10.4236/ijaa.2022.123015
[9]  Hoeneisen, B. (2022) Warm Dark Matter and the Formation of First Galaxies. Journal of Modern Physics, 13, 932-948.
https://doi.org/10.4236/jmp.2022.136053
[10]  Marr, J.H. (2020) The Dynamics of Globular Clusters and Elliptical Galaxies.
[11]  Hoeneisen, B. (2019) A Study of Dark Matter with Spiral Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 9, 71-96.
https://doi.org/10.4236/ijaa.2019.92007
[12]  Oh, S., Hunter, D.A., Brinks, E., Elmegreen, B.G., Schruba, A., Walter, F., et al. (2015) High-Resolution Mass Models of Dwarf Galaxies from Little Things. The Astronomical Journal, 149, Article No. 180.
https://doi.org/10.1088/0004-6256/149/6/180
[13]  Karukes, E.V. and Salucci, P. (2016) The Universal Rotation Curve of Dwarf Disc Galaxies. Monthly Notices of the Royal Astronomical Society, 465, 4703-4722.
https://doi.org/10.1093/mnras/stw3055
[14]  Lelli, F., McGaugh, S.S. and Schombert, J.M. (2016) Sparc: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. The Astronomical Journal, 152, Article No. 157.
https://doi.org/10.3847/0004-6256/152/6/157
[15]  Shajib, A.J., Treu, T., Birrer, S. and Sonnenfeld, A. (2021) Dark Matter Haloes of Massive Elliptical Galaxies at z ∼ 0.2 Are Well Described by the Navarro-Frenk-White Profile. Monthly Notices of the Royal Astronomical Society, 503, 2380-2405.
https://doi.org/10.1093/mnras/stab536
[16]  Boyanovsky, D., de Vega, H.J. and Sanchez, N.G. (2008) Dark Matter Transfer Function: Free Streaming, Particle Statistics, and Memory of Gravitational Clustering. Physical Review D, 78, Article ID: 063546.
https://doi.org/10.1103/physrevd.78.063546
[17]  Song, M., Finkelstein, S.L., Ashby, M.L.N., Grazian, A., Lu, Y., Papovich, C., et al. (2016) The Evolution of the Galaxy Stellar Mass Function at z = 4-8: A Steepening Low-Mass-End Slope with Increasing Redshift. The Astrophysical Journal, 825, Article No. 5.
https://doi.org/10.3847/0004-637x/825/1/5
[18]  Bouwens, R.J., Oesch, P.A., Stefanon, M., Illingworth, G., Labbé, I., Reddy, N., et al. (2021) New Determinations of the UV Luminosity Functions from Z ∼ 9 to 2 Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency. The Astronomical Journal, 162, Article No. 47.
https://doi.org/10.3847/1538-3881/abf83e
[19]  Lapi, A., Salucci, P. and Danese, L. (2018) Precision Scaling Relations for Disk Galaxies in the Local Universe. The Astrophysical Journal, 859, Article No. 2.
https://doi.org/10.3847/1538-4357/aabf35
[20]  Navarro-Carrera, R., Rinaldi, P., Caputi, K.I., Iani, E., Kokorev, V. and van Mierlo, S.E. (2024) Constraints on the Faint End of the Galaxy Stellar Mass Function at Z ≃ 4-8 from Deep JWST Data. The Astrophysical Journal, 961, Article No. 207.
https://doi.org/10.3847/1538-4357/ad0df6
[21]  Mason, C.A., Trenti, M. and Treu, T. (2015) The Galaxy UV Luminosity Function before the EPOCH of Reionization. The Astrophysical Journal, 813, Article No. 21.
https://doi.org/10.1088/0004-637x/813/1/21
[22]  Lapi, A. and Danese, L. (2015) Cold or Warm? Constraining Dark Matter with Primeval Galaxies and Cosmic Reionization after Planck. Journal of Cosmology and Astroparticle Physics, 2015, Article No. 3.
https://doi.org/10.1088/1475-7516/2015/09/003
[23]  Paduroiu, S., Revaz, Y. and Pfenniger, D. (2015) Structure Formation in Warm Dark Matter Cosmologies Top-Bottom Upside-Down.
[24]  Viel, M., Lesgourgues, J., Haehnelt, M.G., Matarrese, S. and Riotto, A. (2005) Constraining Warm Dark Matter Candidates Including Sterile Neutrinos and Light Gravitinos with WMAP and the Lyman-α Forest. Physical Review D, 71, Article ID: 063534.
[25]  Iršič, V., Viel, M., Haehnelt, M.G., Bolton, J.S., Molaro, M., Puchwein, E., et al. (2024) Unveiling Dark Matter Free Streaming at the Smallest Scales with the High Redshift Lyman-Alpha Forest. Physical Review D, 109, Article ID: 043511.
[26]  Georgiev, I., Mellema, G. and Giri, S.K. (2024) The Forest at EndEoR: The Effect of Lyman Limit Systems on the End of Reionisation.
[27]  Hoeneisen, B. (2021) Adding Dark Matter to the Standard Model. International Journal of Astronomy and Astrophysics, 11, 59-72.
https://doi.org/10.4236/ijaa.2021.111004
[28]  Hoeneisen, B. (2023) Exploring Inflation Options for Warm Dark Matter Coupled to the Higgs Boson. International Journal of Astronomy and Astrophysics, 13, 217-235.
https://doi.org/10.4236/ijaa.2023.133013
[29]  Bezrukov, F. and Shaposhnikov, M. (2008) The Standard Model Higgs Boson as the Inflaton. Physics Letters B, 659, 703-706.
https://doi.org/10.1016/j.physletb.2007.11.072

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133