This paper indicates the problem of the famous Riemann hypothesis (RH), which has been well-verified by a definite answering method using a Bose-Einstein Condensate (BEC) phase. We adopt mathematical induction, mappings, and laser photons governed by electromagnetically induced transparency (EIT) to examine the existence of the RH. In considering the well-developed as Riemann zeta function, we find that the existence of RH has a corrected and self-consistent solution. Specifically, there is the only one pole at s = 1 on the complex plane for Riemann’s functions, which generalizes to all non-trivial zeros while s > 1. The essential solution is based on the BEC phases and on the nature of the laser photon(s). This work also incorporates Heisenberg commutators
in the field of quantum mechanics. We found that a satisfactory solution for the RH would be incomplete without the formalism of Heisenberg commutators, BEC phases, and EIT effects. Ultimately, we propose the application of qubits in connection with the RH.
Von Koch, H. (1901) Sur la distribution des nombres premiers. Acta Mathematica, 24, 159-182.
[3]
Cramér, H. (1936) On the Order of Magnitude of the Difference between Consecutive Prime Numbers. Acta Arithmetica, 2, 23-46. https://doi.org/10.4064/aa-2-1-23-46
[4]
Hardy, G.H. and Littlewood, J.E. (1921) The Zeros of Riemann’s Zeta-Function on the Critical Line. Mathematische Zeitschrift, 10, 283-317. https://doi.org/10.1007/bf01211614
[5]
Pólya, G. (1927) Über die algebraisch-funktionentheoretischen Untersuchungen von J. L. W. V. Jensen. Matematisk-FysiskeMeddelelser, 7, 3-33.
[6]
Chowla, S. (1934) On Abundant Numbers. The Journal of the Indian Mathematical Society, 1, 41-44.
[7]
Rosser, J.B. and Schoenfeld, L. (1962) Approximate Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics, 6, 64-94. https://doi.org/10.1215/ijm/1255631807
[8]
Hörmander, L. (1990) The Analysis of Linear Partial Differential Operators I. Springer Verlag.
[9]
Rudin, W. (1987) Real and Complex Analysis. 3rd Edition, McGraw-Hill.
[10]
Strichartz, R. (1994) A Guide to Distribution Theory and Fourier Transforms. CRC Press.
[11]
Yosida, K. (1968) Functional Analysis. Academic Press.
[12]
Weinberger, P.J. (1972) On Euclidean Rings of Algebraic Integers, Analytic Number Theory. Proceedings of Symposia in Pure Mathematics, 24, 321-332.
[13]
Odlyzko, A.M. (1990) Bounds for Discriminants and Related Estimates for Class Numbers, Regulators and Zeros of Zeta Functions: A Survey of Recent Results. JournaldeThéoriedesNombresdeBordeaux, 2, 119-141. https://doi.org/10.5802/jtnb.22
[14]
Ono, K. and Soundararajan, K. (1997) Ramanujan’s Ternary Quadratic Form. Inventiones Mathematicae, 130, 415-454. https://doi.org/10.1007/s002220050191
[15]
Dunn, A. and Radziwiłł, M. (2021) Bias in Cubic Gauss Sums: Patterson’s Conjecture.
Chen, Y., Lin, C. and Yu, I.A. (2000) Roles of Degenerate Zeeman Levels in Electromagnetically Induced Transparency. Physical Review A, 61, Article ID: 053805.
[18]
Chen, Y., Liao, Y., Chiu, H., Su, J. and Yu, I.A. (2001) Observation of the Quantum Interference Phenomenon Induced by Interacting Dark Resonances. Physical Review A, 64, Article ID: 053806. https://doi.org/10.1103/physreva.64.053806
[19]
Chen, Y., Wang, C., Wang, S. and Yu, I.A. (2006) Low-Light-Level Cross-Phase-Modulation Based on Stored Light Pulses. Physical Review Letters, 96, Article ID: 043603. https://doi.org/10.1103/physrevlett.96.043603
[20]
Lin, Y., Liao, W., Peters, T., Chou, H., Wang, J., Cho, H., et al. (2009) Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings. Physical Review Letters, 102, Article ID: 213601. https://doi.org/10.1103/physrevlett.102.213601
[21]
Chen, Y., Lee, M., Hung, W., Chen, Y., Chen, Y. and Yu, I.A. (2012) Demonstration of the Interaction between Two Stopped Light Pulses. Physical Review Letters, 108, Article ID: 173603. https://doi.org/10.1103/physrevlett.108.173603
[22]
Cramér, H. (1920) Some Theorems Concerning Prime Numbers. Arkiv för Matematik, Astronomi och Fysik, 15, 5.
[23]
Ingham, A.E. (1940) On the Estimation of N(σ, T). TheQuarterlyJournalofMathematics, 11, 201-202. https://doi.org/10.1093/qmath/os-11.1.201
[24]
Berry, M.V. and Keating, J.P. (1999) Chapter H = xp and the Riemann Zeros, Supersymmetry and Trace Formulae. NATO ASI Series, 370, Springer.
[25]
Bigagli, N., Yuan, W., Zhang, S., Bulatovic, B., Karman, T., Stevenson, I., et al. (2024) Observation of Bose-Einstein Condensation of Dipolar Molecules. Nature, 631, 289-293. https://doi.org/10.1038/s41586-024-07492-z
[26]
Ji, A., Liu, W.M., Song, J.L. and Zhou, F. (2008) Dynamical Creation of Fractionalized Vortices and Vortex Lattices. Physical Review Letters, 101, Article ID: 010402. https://doi.org/10.1103/physrevlett.101.010402
[27]
Schmidt, H. and Imamoglu, A. (1996) Giant Kerr Nonlinearities Obtained by Electromagnetically Induced Transparency. OpticsLetters, 21, 1936-1938. https://doi.org/10.1364/ol.21.001936
[28]
Liang, Z.X., Zhang, Z.D. and Liu, W.M. (2005) Dynamics of a Bright Soliton in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential. Physical Review Letters, 94, Article ID: 050402. https://doi.org/10.1103/physrevlett.94.050402
[29]
Ji, A., Xie, X.C. and Liu, W.M. (2007) Quantum Magnetic Dynamics of Polarized Light in Arrays of Microcavities. Physical Review Letters, 99, Article ID: 183602. https://doi.org/10.1103/physrevlett.99.183602
[30]
Ilhan, O.A., Manafian, J. and Shahriari, M. (2019) Lump Wave Solutions and the Interaction Phenomenon for a Variable-Coefficient Kadomtsev-Petviashvili Equation. Computers&MathematicswithApplications, 78, 2429-2448. https://doi.org/10.1016/j.camwa.2019.03.048
[31]
Zhou, X., Ilhan, O.A., Manafian, J., Singh, G. and Salikhovich Tuguz, N. (2021) N-lump and Interaction Solutions of Localized Waves to the (2 + 1)-Dimensional Generalized KDKK Equation. JournalofGeometryandPhysics, 168, Article ID: 104312. https://doi.org/10.1016/j.geomphys.2021.104312
[32]
Ren, J., Ilhan, O.A., Bulut, H. and Manafian, J. (2021) Multiple Rogue Wave, Dark, Bright, and Solitary Wave Solutions to the KP-BBM Equation. JournalofGeometryandPhysics, 164, Article ID: 104159. https://doi.org/10.1016/j.geomphys.2021.104159
[33]
Zhang, H., Manafian, J., Singh, G., Ilhan, O.A. and Zekiy, A.O. (2021) N-Lump and Interaction Solutions of Localized Waves to the (2 + 1)-Dimensional Generalized KP Equation. ResultsinPhysics, 25, Article ID: 104168. https://doi.org/10.1016/j.rinp.2021.104168
[34]
Nisar, K.S., Ilhan, O.A., Manafian, J., Shahriari, M. and Soybaş, D. (2021) Analytical Behavior of the Fractional Bogoyavlenskii Equations with Conformable Derivative Using Two Distinct Reliable Methods. ResultsinPhysics, 22, Article ID: 103975. https://doi.org/10.1016/j.rinp.2021.103975
[35]
Gu, Y., Malmir, S., Manafian, J., Ilhan, O.A., Alizadeh, A. and Othman, A.J. (2022) Variety Interaction between k-Lump and k-Kink Solutions for the (3 + 1)-D Burger System by Bilinear Analysis. ResultsinPhysics, 43, Article ID: 106032. https://doi.org/10.1016/j.rinp.2022.106032
[36]
Zhang, M., Xie, X., Manafian, J., Ilhan, O.A. and Singh, G. (2022) Characteristics of the New Multiple Rogue Wave Solutions to the Fractional Generalized CBS-BK Equation. JournalofAdvancedResearch, 38, 131-142. https://doi.org/10.1016/j.jare.2021.09.015