全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

亚麻纤维水泥基复合材料性能研究
Study on the Properties of Flax Fiber Cement-Based Composite Materials

DOI: 10.12677/hjce.2024.138154, PP. 1414-1430

Keywords: 亚麻纤维,水泥基,复合材料,植物纤维
Flax Fiber
, Cement-Based, Composite Materials, Plant Fiber

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用植物纤维替代工业纤维增强水泥基材料,可以满足工业纤维所带来的增强效果,符合我国绿色环保可持续发展之路。本文以亚麻纤维水泥基复合材料为研究对象,选取不同亚麻纤维长度和掺量,探究亚麻纤维对水泥基复合材料性能的影响规律。以纤维长度和纤维掺量作为影响因素,每个因素取三个水平,对试验结果进行分析,探究不同因素对复合材料的基本物理性能和力学性能的影响程度,并得出主要影响因素和最佳次要影响因素;选取定量的纤维掺量和长度,设置预处理的纤维组、未处理的纤维组和不掺纤维的空白组,对比分析预处理纤维与未处理纤维对复合材料的、力学性能和耐久性能的影响规律。研究结果表明:对亚麻纤维水泥基复合材料的物理性能、力学性能影响最显著的因素为亚麻纤维掺量,并确定亚麻纤维的最佳长度为10 mm;预处理纤维可以提高复合材料的抗折强度,降低复合材料的抗压强度,但与未处理纤维相比抗压强度下降的幅度较小;各试验组抗干缩能力由大到小为:预处理纤维组、未处理纤维组、不掺纤维组,抗冻能力由大到小为:预处理纤维组、不掺纤维组、未处理纤维组。
The use of plant fiber instead of industrial fiber reinforced cement-based materials can meet the enhancement effect brought by industrial fiber, which is in line with the sustainable development of green environmental protection in China. In this paper, flax fiber cement-based composites are taken as the research object, and different lengths and contents of flax fiber are selected to explore the influence of flax fiber on the properties of cement-based composites. The fiber length and fiber content were taken as the influencing factors, and three levels were taken for each factor. The test results were analyzed to explore the influence of different factors on the basic physical properties and mechanical properties of the composites, and the main influencing factors and the best secondary influencing factors were obtained. The quantitative fiber content and length were selected, and the pretreated fiber group, untreated fiber group and blank group without fiber were set up. The effects of pretreated fiber and untreated fiber on the mechanical properties and durability of composites were compared and analyzed. The results show that the most significant factor affecting the physical and mechanical properties of flax fiber cement-based composites is the content of flax fiber, and the optimum length of flax fiber is determined to be 10 mm. Pretreated fibers can improve the flexural strength of composites and reduce the compressive strength of composites, but the decrease of compressive strength is smaller than that of untreated fibers. The anti-shrinkage ability of each test group from large to small is: pretreatment fiber group, untreated fiber group, non-doped fiber group, and the anti-freezing ability from large to small is: pretreatment fiber group, non-doped fiber group, untreated fiber group.

References

[1]  沈荣熹. 新型纤维增强水泥复合材料研究的进展[J]. 硅酸盐学报, 1993(4): 356-364.
[2]  张帅, 杨鼎宜, 骆静静, 等. 水泥混凝土用合成纤维的强度统计分析和耐碱性分析[J]. 混凝土, 2017(11): 122-125.
[3]  杨政险, 李慷, 张勇, 等. 天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J]. 硅酸盐学报, 2022, 50(2): 522-532.
[4]  沈荣熹, 林震. 国际纤维水泥制品的现况与动向[J]. 建筑装饰材料世界, 2008(11): 61-64.
[5]  沈荣熹. 中国纤维增强水泥复合材料的新进展[J]. 硅酸盐通报, 2005, 24(5): 55-59.
[6]  郭宜杭, 李黎, 杨晨欣, 等. 植物纤维增强混凝土研究进展[J]. 硅酸盐通报, 2022, 41(10): 3347-3358.
[7]  罗齐鸣. 稻壳剑麻纤维砂浆装配式墙板试验研究[D]: [硕士学位论文]. 武汉: 武汉轻工大学, 2017.
[8]  Zhao, K., Xue, S., Zhang, P., Tian, Y. and Li, P. (2019) Application of Natural Plant Fibers in Cement-Based Composites and the Influence on Mechanical Properties and Mass Transport. Materials, 12, Article 3498.
https://doi.org/10.3390/ma12213498
[9]  Santos, F.M.R.D., Souza, T.F.D., Barquete, D.M. and Amado, F.D.R. (2016) Comparative Analysis of the Sisal and Piassava Fibers as Reinforcements in Lightweight Cementitious Composites with EVA Waste. Construction and Building Materials, 128, 315-323.
https://doi.org/10.1016/j.conbuildmat.2016.10.035
[10]  徐蕾. 应用亚麻纤维减少混凝土塑性收缩开裂的研究[J]. 混凝土, 2013(10): 91-94.
[11]  巩亚琦. 黄麻纤维高强混凝土性能试验研究[D]: [硕士学位论文]. 鞍山: 辽宁科技大学, 2018.
[12]  GB 175-2007. 通用硅酸盐水泥[S]. 北京: 中国标准出版社, 2007.
[13]  GB/T 1596-2017. 用于水泥和混凝土中的粉煤灰[S]. 北京: 中国标准出版社, 2017.
[14]  GB 8076-2008. 混凝土外加剂[S]. 北京: 中国标准出版社, 2008.
[15]  GB/T 14684-2011. 建设用砂[S]. 北京: 中国标准出版社, 2011.
[16]  张超, 李东旭. 水泥基聚合物防水材料的研究进展[J]. 材料导报, 2011, 25(19): 131-133.
[17]  JGJ/T 70-2009. 建筑砂浆基本性能试验方法标准[S]. 北京: 中国标准出版社, 2009.
[18]  魏勇全. 植物秸秆混凝土物理力学与热工性能试验研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2020.
[19]  李岩, 李倩. 植物纤维增强复合材料力学高性能化与多功能化研究[J]. 固体力学学报, 2017, 38(3): 215-243.
[20]  许秀颖, 边加保, 李慧源. 植物纤维增强水泥基复合材料的研究进展与应用[J]. 四川水泥, 2019(10): 14.
[21]  徐青, 吴能森, 苏忠高, 等. 植物纤维增强水泥基复合材料研究综述[J]. 福建建材, 2018(3): 20-24.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133