|
暴雨作用下岩质边坡生态护坡体稳定性的数值分析
|
Abstract:
为了研究暴雨作用下岩质边坡生态护坡体的稳定性,基于Duncan-Chang模型和剪切损伤模型,开发了护坡根土复合体及其与基岩接触面相互作用的力学模型,并通过ABAQUS中的UMAT和FRIC子程序接口对模型进行了开发实现。利用开发的模型分析了开挖坡度、植物类型和基岩风化程度三个因素对护坡土体稳定性的影响,发现边坡开挖坡率和植物类型对护坡土体稳定性的影响显著。与开挖坡率为1:0.75工况相比,开挖坡率为1:1.00时护坡土体的最大位移减小14.79%,开挖坡率为1:1.25时护坡土体的最大位移减小25.35%。与无植物工况相比,种植狗牙根草或香根草后护坡土体的最大位移值可减小60%~80%。另外,种植狗牙根草或香根草时,护坡土体的最大位移随基岩风化程度的增大而减小。从护坡土体的力学特性与水力特性的耦合作用出发,分析了降雨作用下岩质边坡护坡土体变形破坏机理与破坏方式,并研究了降雨作用下植物对护坡土体变形的影响,发现狗牙根草能降低护坡土体渗透系数,减少降雨入渗,有利于护坡土体的稳定性。香根草根系生长过程易在土体内部形成优势渗透通道,增大土体的渗透系数,护坡土体的变形量更大。
In order to study the stability of ecological protection slope bodies of rocky slopes under the influence of heavy rain, a mechanical model of the root-soil composite body and its interaction with the rock contact surface was developed based on the Duncan-Chang model and shear damage model. The models were developed and implemented through ABAQUS using the UMAT and FRIC subroutine interfaces. Based on the developed model, the influences of slope excavation slope, plant type, and rock weathering degree on the stability of slope protection soil were analyzed. It was found that the slope excavation slope and plant type significantly affect the stability of the protection soil. Compared with the slope excavation ratio of 1:0.75, the maximum displacement of the protection soil decreased by 14.79% when the slope excavation ratio was 1:1.00, and by 25.35% when the slope excavation ratio was 1:1.25. Planting Bermuda grass or vetiver grass reduced the maximum displacement of the protection soil by 60% to 80% compared to the non-vegetated scenario. Additionally, when planting Bermuda grass or vetiver grass, the maximum displacement of the protection soil decreased with the increase in rock weathering degree. Starting from the coupling effect of the mechanical and hydraulic characteristics of the protection soil, the deformation and failure mechanism of the rocky slope protection soil under rainfall conditions was analyzed, along with the influence of plants on the deformation of the protection soil. It was found that Bermuda grass can reduce the permeability coefficient of the protection soil, reduce rainfall infiltration, and contribute to the stability of the protection soil. The root growth process of vetiver grass easily forms dominant permeation channels inside the soil, increasing the soil’s permeability coefficient and causing greater deformation of the protection soil.
[1] | Razali, M., Ismail, M.A.M., Yee, A.L.K., Adnan, R.A.A.R., Kawano, K., Date, K., et al. (2023) Preliminary Study on In-Situ Modulus Measurement Using Knocking Ball Test; A Case Study on Setul Limestone. KSCE Journal of Civil Engineering, 27, 3323-3332. https://doi.org/10.1007/s12205-023-2128-z |
[2] | 张学宁, 王德成, 尤泳, 等. 草地切根下根土复合体本构关系研究[J]. 农业机械学报, 2022, 53(7): 337-346. |
[3] | 汪优, 任加琳, 李赛, 等. 土-结构接触面剪切全过程本构关系研究[J]. 湖南大学学报(自然科学版), 2021, 48(3): 144-152. |
[4] | Du, P., Zhou, D., Liu, X. and Chen, X. (2023) Mechanical Test and Action Mechanism of Interface between Gravel Soil and Concrete. Frontiers in Earth Science, 11, Article 1112568. https://doi.org/10.3389/feart.2023.1112568 |
[5] | Li, D., Shi, C., Ruan, H. and Li, B. (2022) Shear Characteristics of Soil—Concrete Structure Interaction Interfaces. Applied Sciences, 12, Article 9145. https://doi.org/10.3390/app12189145 |
[6] | Nguyen, B.T., Ishikawa, T. and Murakami, T. (2020) Effects Evaluation of Grass Age on Hydraulic Properties of Coarse-Grained Soil. Transportation Geotechnics, 25, Article 100401. https://doi.org/10.1016/j.trgeo.2020.100401 |
[7] | Meng, S., Zhao, G. and Yang, Y. (2021) Experimental Study on Influence of Vegetation Roots on Hydraulic Characteristics of Slope under Rainfall. Journal of Physics: Conference Series, 1838, Article 012057. https://doi.org/10.1088/1742-6596/1838/1/012057 |
[8] | Fraccica, A., Romero, E. and Fourcaud, T. (2019) Multi-Scale Effects on the Hydraulic Behaviour of a Root-Permeated and Compacted Soil. E3S Web of Conferences, 92, Article 12014. https://doi.org/10.1051/e3sconf/20199212014 |
[9] | Yildiz, A., Graf, F. and Springman, S.M. (2020) On the Dilatancy of Root-Permeated Soils under Partially Saturated Conditions. Géotechnique Letters, 10, 227-230. https://doi.org/10.1680/jgele.19.00048 |
[10] | 吴宏伟. 大气-植被-土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1): 1-47. |
[11] | Ni, J.J. and Ng, C.W.W. (2019) Long-Term Effects of Grass Roots on Gas Permeability in Unsaturated Simulated Landfill Covers. Science of the Total Environment, 666, 680-684. https://doi.org/10.1016/j.scitotenv.2019.02.248 |
[12] | 宋瑞, 唐洪祥, 张韬, 等. 基于机器学习的砂土邓肯-张模型参数预测[J]. 水利与建筑工程学报, 2024, 22(1): 186-191, 226. |
[13] | Guo, C., Guo, P., Zhao, L., Lin, P. and Wang, F. (2021) A Weibull-Based Damage Model for the Shear Softening Behaviours of Soil-Structure Interfaces. Geotechnical Research, 8, 54-63. https://doi.org/10.1680/jgere.20.00043 |
[14] | 季京晨. 花岗岩物理力学性质与宏微观力学特性研究[D]: [硕士学位论文]. 淮南: 安徽理工大学, 2020. |
[15] | 徐安东. 考虑根系形态分布的固土模型优化研究[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2019. |
[16] | Ma, Q., Wu, N., Xiao, H., Li, Z. and Li, W. (2021) Effect of Bermuda Grass Root on Mechanical Properties of Soil under Dry-Wet Cycles. Bulletin of Engineering Geology and the Environment, 80, 7083-7097. https://doi.org/10.1007/s10064-021-02369-1 |
[17] | 程鹏, 李锦辉, 宋磊. 生态边坡的水力和力学特性分析: 试验研究[J]. 岩土工程学报, 2017, 39(10): 1901-1907. |
[18] | 胡云进. 裂隙非饱和渗流试验研究及有地表入渗的裂隙岩体渗流数值分析[J]. 岩石力学与工程学报, 2002, 21(3): 373. |