全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中部六省城市旅游业碳排放时空演变分析
Analysis of the Spatial and Temporal Evolution of Carbon Emissions from Urban Tourism Industry in Six Central Provinces

DOI: 10.12677/sa.2024.134141, PP. 1397-1406

Keywords: 中部六省,旅游业碳排放,趋势分析,时空演变
Six Central Provinces
, Carbon Emissions from the Tourism Industry, Trend Analysis, Spatial and Temporal Evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着旅游业的发展,其产生的碳排放量越来越高,对全球的气候生态造成了威胁。本文选取中国中部六省为研究对象,采取“自上而下”的方法测算了该区域各市(州) 2014~2021年旅游业的碳排放量,运用slope趋势分析、探索性空间数据分析方法分别分析了中部六省各市(州)旅游业碳排放增长趋势和空间格局特征。结果表明:1) 中部六省2014~2019年大部分市(州)的旅游业碳排放呈现增长趋势,由于疫情影响,2019~2021年大部分市(州)的旅游业碳排放呈现下降趋势;2) 中部六省旅游业碳排放类型以中碳、较高碳和高碳为主,空间上变化由“南北高,中间低”向“南高北低”发展;3) 全局Moran’s I在0.330~0.482之间波动,表明中部六省旅游业碳排放强度具有显著的空间正相关性,旅游业碳排放强度呈现集聚特征,以高–高集聚和低–低集聚为主。对中部六省市域旅游业进行时空分析,总结变化规律,有利于因地制宜地制定旅游业碳减排政策。
With the development of the tourism industry, its carbon emissions are increasing, posing a threat to the global climate ecology. This article selects six central provinces of China as the research object and adopts a “top-down” method to calculate the carbon emissions of the tourism industry in each city (state) of the region from 2014 to 2021. Slope trend analysis and exploratory spatial data analysis methods are used to analyze the growth trend and spatial pattern characteristics of carbon emissions in the tourism industry in each city (state) of the six central provinces. The results indicate that: 1) The tourism carbon emissions of most cities (states) in the six central provinces showed an increasing trend from 2014 to 2019. Due to the impact of the epidemic, the carbon emissions from the tourism industry in most cities (prefectures) showed a decreasing trend from 2019 to 2021; 2) The carbon emissions from the tourism industry in the six central provinces are mainly medium carbon, higher carbon, and high carbon, with spatial changes shifting from “high in the north and south, low in the middle” to “high in the south and low in the north”; 3) The global Moran’s I fluctuates between 0.330 and 0.482, indicating a significant spatial positive correlation between the carbon emission intensity of the tourism industry in the six central provinces. The carbon emission intensity of the tourism industry exhibits clustering characteristics, mainly consisting of high-high clustering and low-low clustering. Conducting a spatiotemporal analysis of the tourism industry in the six central provinces and cities and summarizing the patterns of change is beneficial for formulating carbon reduction policies for the tourism industry according to local conditions.

References

[1]  李远玲, 王金龙, 杨伶. 基于县域尺度的湖南省农业碳排放时空特征分析[J]. 中国农业资源与区划, 2022, 43(4): 75-84.
[2]  Tang, Z., Shang, J., Shi, C.B., et al. (2014) Decoupling Indicators of CO2 Emissions from the Tourism Industry in China: 1990-2012. Ecological Indicators, 46, 390-397.
https://doi.org/10.1016/j.ecolind.2014.06.041
[3]  王坤, 黄震方, 曹芳东. 中国旅游业碳排放效率的空间格局及其影响因素[J]. 生态学报, 2015, 35(21): 7150-7160.
[4]  Patterson, M. and McDonald, G. (2004) How Clean and Green Is New Zealand Tourism? Lifecycle and Future Environmental Impacts. Landcare Research Science Series No. 24, Manaaki Whenua Press.
[5]  Gössling, S. (2002) Global Environmental Consequences of Tourism. Global Environmental Change, 12, 283-302.
https://doi.org/10.1016/S0959-3780(02)00044-4
[6]  吴普, 石培华. 中国旅游业能源消耗与二氧化碳排放量估算(英文) [J]. 地理学报, 2011, 21(4): 733-745.
[7]  徐琼, 程慧, 钟美瑞. 中国旅游业碳排放效率趋同演变及其趋势预测[J]. 生态学报, 2023, 43(9): 3417-3429.
[8]  高源遥, 沈西林, 梁文灏, 等. 基于STIRPAT模型的四川省旅游业碳排放量影响因素分析[J]. 环境污染与防治, 2023, 45(12): 1737-1742.
[9]  时朋飞, 王梦君, 陶春艳, 等. 长江经济带旅游业碳排放影响因素与峰值预测[J]. 统计与决策, 2023, 39(12): 90-95.
[10]  朱海, 王立国, 贺焱, 等. 多情景下中国省域旅游业碳达峰的时空特征研究[J]. 干旱区资源与环境, 2023, 37(1): 169-176.
[11]  黄美忠, 黄晓坤. 长三角城市群旅游业碳排放脱钩效应测度与空间分异[J]. 中南林业科技大学学报, 2022, 42(5): 170-180.
[12]  姚丹, 任丽燕, 马仁锋, 等. 长三角旅游业碳排放强度空间格局及影响因素分析[J]. 生态科学, 2021, 40(2): 89-98.
[13]  王强, 伍世代, 李婷婷. 中国工业经济转型过程中能源消费与碳排放时空特征研究[J]. 地理科学, 2011, 31(1): 36-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133