全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ARIMA模型青海省肉类产量分析与预测
Analysis and Forecasting of Meat Production in Qinghai Province Based on ARIMA Model

DOI: 10.12677/sa.2024.134138, PP. 1374-1382

Keywords: 青海省肉类产量,ARIMA(p, d, q)模型,预测分析,时间序列分析
Meat Production in Qinghai Province
, ARIMA(p, d, q) Model, Predictive Analysis, Time Series Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

青海省位于中国西部,拥有丰富的草地资源和独特的畜牧业生产条件,使得该地区的肉类产量在全国占有重要地位。肉类产量不仅直接影响当地牧民的收入水平,还关系到青海省的经济发展和社会稳定。有鉴于此,采用R studio软件建立自回归差分移动平均(ARIMA)模型可对青海省的肉类产量进行历史数据分析和未来趋势预测,并利用AIC准则确定模型的最优阶数。本文使用1997~2020年的青海省肉类产量作为数据源,在此基础上采用2021~2023年青海省肉类产量数据作为对比数据来判断真实值与预测值之间的差异,最终可得出其真实值与预测值之前有一定差异,但差异较小,整体预测精度较高。
Qinghai Province, located in western China, has rich grassland resources and unique livestock production conditions, which make the meat production in the region occupy an important position in China. Meat production not only directly affects the income level of local herders, but also relates to the economic development and social stability of Qinghai Province. In view of this, the autoregressive integrated moving average (ARIMA) model can be built using R studio software to analyze the historical data and forecast the future trend of meat production in Qinghai Province, and the optimal order of the model can be determined using the AIC criterion. In this paper, the meat production of Qinghai Province from 1997 to 2020 is used as the data source, and on this basis, the meat production data of Qinghai Province from 2021 to 2023 is used as the comparative data to judge the difference between the real value and the forecast value, and finally, it can be concluded that there is a certain difference between the real value and the forecast value, but the difference is small, and the overall forecast accuracy is high.

References

[1]  程伟志, 张军, 张洪征. 基于ARIMA模型的我国城市集中供热分析与预测研究[J]. 城市建设理论研究(电子版), 2024(7): 181-183.
[2]  吴培, 李哲敏. 中国猪肉价格预测研究——基于ARIMA-GM-RBF组合模型的分析[J]. 价格理论与实践, 2019(1): 75-78.
[3]  李哲远, 张成鹏. 基于ARIMA模型对山东省生猪出场价格变动的预测[J]. 当代农村财经, 2024(5): 34-39.
[4]  王燕, 编著. 时间序列分析: 基于R [M]. 第2版. 北京: 中国人民大学出版社, 2020.
[5]  牛桂草, 周绩宏, 马红燕, 等. 基于ARMA模型的河北鸭梨价格预测及预警[J]. 山东农业科学, 2021, 53(11): 151-156.
[6]  杨盼盼, 赵慧峰. 基于ARMA模型河北省羊肉产量分析与预测[J]. 北方牧业, 2023(8): 8-9.
[7]  王湘予, 张艳, 张保卫, 李升升. 浅析青海畜牧业标准化工作的现状与对策[J]. 青海畜牧兽医杂志, 2022, 52(5): 59-61.
[8]  高生强. 青海地区肉羊养殖现状及效益情况调查[J]. 中国畜牧业, 2023(16): 35-36.
[9]  刘海棠. 加快青海畜牧业转型升级和高质量发展的对策及建议[J]. 青海畜牧兽医杂志, 2022, 52(2): 56-60, 71.
[10]  杨莹. 青海省特色农产品物流现状分析及对策[J]. 中国物流与采购, 2011(9): 54-55.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133