全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粤港澳大湾区商业空间结构演变特征研究——基于POI大数据的区县视角
Research on Evolution Characteristics of Commercial Spatial Structure in Guangdong-Hong Kong-Macao Greater Bay Area —From the Perspective of County-Level Regions Based on POI Big Data

DOI: 10.12677/sd.2024.148232, PP. 2006-2019

Keywords: POI大数据,商业空间,空间核密度,粤港澳大湾区
POI Big Data
, Commercial Space, Spatial Kernel Density, Guangdong-Hong Kong-Macao Greater Bay Area

Full-Text   Cite this paper   Add to My Lib

Abstract:

数字经济时代POI大数据为城市及城市群商业空间结构及变化研究提供了新思路。基于2015年和2021年POI大数据,采用空间核密度、Theil指数等方法从区县层面对粤港澳大湾区商业总体及购物、休闲、餐饮三类业态的空间布局演变特征、区域差异进行研究。结果表明:1) 2015~2021年间粤港澳大湾区多中心商业空间一体化发展格局进一步强化,形成显著的多中心多等级都市圈商业空间格局;2) Theil指数表明商业网点总体及三大细分业态POI数量的区域差异均呈现扩大态势,组内差距明显大于组间差距;相对于城市尺度下的区域差异,区县尺度下的组内差异有所下降但组间差距明显增大;3) 不同商业中心区的演变趋势存在差异,高密度商圈主要分布于广州、深圳、香港三大一线城市,商业网点密度最高等级从2015年的968个/km2增加到2021年1904个/km2;4) 购物服务类、餐饮服务类、休闲娱乐POI增长幅度均超过50%,空间集聚和连片化特征明显加强;5) 不同商业业态网点规模结构发生动态调整,超市、专卖店、便利店等业态网点增长较快,大型购物中心下降态势明显,不同业态的空间变化特征有明显差异。
POI big data provides new ideas for research on spatial structure and changes of commercial space in cities and urban agglomerations in digital economy era. Based on the two periods of POI big data in 2015 and 2021, the paper used method called spatial kernel density and Theil’s Index to study evolution characteristics of spatial layout of the overall business and three types of business formats in the Guangdong-Hong Kong-Macao Greater Bay Area from perspective of county-level regions. The results showed that: 1) During the period from 2015 to 2021, the integrated development pattern of multi-center commercial space in Guangdong-Hong Kong-Macao Greater Bay Area was further strengthened, forming a significant multi-center and multi-level metropolitan commercial space pattern; 2) Theil’s index showed that the regional differences of POI quantity in all commercial network and three sub-formats were enlarged, and the intra-group differences were obviously larger than the inter-group differences. Relative to regional differences at the city scale, intra-group differences at county scale declined but inter-group gaps increased significantly. 3) There were differences in the evolution trends of different commercial central areas. The high-density business districts were mainly distributed in three first-tier cities including Guangzhou, Shenzhen, and Hong Kong. The highest level of commercial network density increased from 968 per km2 in 2015 to 1904 per km2 in 2021; 4) The growth rate of shopping service, catering service, and leisure entertainment POIs exceeded 50%, and the characteristics of spatial agglomeration and contiguousness were significantly strengthened; 5) The scale structure of outlets for different business formats underwent dynamic adjustments. Supermarkets, specialty stores, convenience stores, and other business formats had rapid growth. Large shopping malls showed a significant downward

References

[1]  蔡赤萌. 粤港澳大湾区城市群建设的战略意义和现实挑战[J]. 广东社会科学, 2017(4): 5-14+254.
[2]  国务院. 中共中央 国务院关于加快建设全国统一大市场的意见[EB/OL].
https://www.gov.cn/zhengce/2022-04/10/content_5684385.htm, 2022-03-05.
[3]  林耿, 阎小培. 广州市商业功能区空间结构研究[J]. 人文地理, 2003, 18(3): 37-41.
[4]  巫细波, 赖长强. 基于POI大数据的城市群功能空间结构特征研究——以粤港澳大湾区为例[J]. 城市观察, 2019(3): 44-55.
[5]  张小英, 巫细波. 电商时代大城市商业布局的时空演变特征与趋势——基于多期POI数据[J]. 资源开发与市场, 2022, 38(4): 468-475.
[6]  吴康敏, 张虹鸥, 王洋, 等. 广州市多类型商业中心识别与空间模式[J]. 地理科学进展, 2016, 35(8): 963-974.
[7]  陈蔚珊, 柳林, 梁育填. 基于POI数据的广州零售商业中心热点识别与业态集聚特征分析[J]. 地理研究, 2016, 35(4): 703-716.
[8]  巫细波, 张小英, 李晓琪. POI大数据视角下粤港澳大湾区商业发展水平测度、区域差异及影响因素[J]. 产业创新研究, 2024(13): 6-10.
[9]  国家标准化管理委员会. 零售业态分类[EB/OL].
https://www.nssi.org.cn/nssi/front/6561303.html, 2004-06-09.
[10]  覃剑, 巫细波, 赵蓓蕾. 多维度视角下的粤港澳大湾区协同发展评价研究[J]. 可持续发展, 2023, 13(2): 776-790.
https://doi.org/10.12677/SD.2023.132081

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133