|
随机环境中加权分枝过程的概率不等式
|
Abstract:
令
表示独立同分布随机环境
中的加权分枝过程,本文针对统计量
,借助Markov不等式建立了一个相关概率不等式,这一结果可以用于探索种群动态和概率特性,有助于深入理解随机环境中加权分枝模型的本质。
Let
denote the weighted branching process in independently and identically distributed random environments
[1] | Hoeffding, W. (1963) Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58, 13-30. https://doi.org/10.1080/01621459.1963.10500830 |
[2] | Nagaev, S.V. and Vakhtel, V. (2006) Probability Inequalities for a Critical Galton—Watson Process. Theory of Probability & Its Applications, 50, 225-247. https://doi.org/10.1137/s0040585x97981640 |
[3] | Rösler, U. (1992) A Fixed Point Theorem for Distributions. Stochastic Processes and their Applications, 42, 195-214. https://doi.org/10.1016/0304-4149(92)90035-o |
[4] | Kuhlbusch, D. (2004) On Weighted Branching Processes in Random Environment. Stochastic Processes and their Applications, 109, 113-144. https://doi.org/10.1016/j.spa.2003.09.004 |
[5] | Liang, X. and Liu, Q. (2013) Weighted Moments of the Limit of a Branching Process in a Random Environment. Proceedings of the Steklov Institute of Mathematics, 282, 127-145. https://doi.org/10.1134/s0081543813060126 |
[6] | Hao, S. (2017) Limit Theorems for Multiplicative Cascades in a Random Environment. Taiwanese Journal of Mathematics, 21, 943-959. https://doi.org/10.11650/tjm/5216 |
[7] | 邓琳, 陈祁欢, 鲁展. 随机环境加权分枝过程的方差和Fuk-Nagaev型不等式[J]. 应用数学进展, 2023, 12(10): 4183-4188. |
[8] | 鲁展, 彭聪, 邓琳. 随机环境中加权分枝过程的偏差不等式[J]. 湖北文理学院学报(自然科学版), 2023, 44(11): 5-7. |