全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

随机环境中加权分枝过程的概率不等式
Probability Inequalities for Weighted Branching Processes in Random Environments

DOI: 10.12677/aam.2024.138385, PP. 4043-4048

Keywords: 加权分枝过程,随机环境,概率不等式
Weighted Branching Process
, Random Environment, Probability Inequality

Full-Text   Cite this paper   Add to My Lib

Abstract:

{ Y n ,n0 } 表示独立同分布随机环境 ξ= ( ξ n ) n0 中的加权分枝过程,本文针对统计量 log( Y n 0 +n Y n 0 ) ,借助Markov不等式建立了一个相关概率不等式,这一结果可以用于探索种群动态和概率特性,有助于深入理解随机环境中加权分枝模型的本质。
Let { Y n ,n0 } denote the weighted branching process in independently and identically distributed random environments ξ= ( ξ

References

[1]  Hoeffding, W. (1963) Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58, 13-30.
https://doi.org/10.1080/01621459.1963.10500830
[2]  Nagaev, S.V. and Vakhtel, V. (2006) Probability Inequalities for a Critical Galton—Watson Process. Theory of Probability & Its Applications, 50, 225-247.
https://doi.org/10.1137/s0040585x97981640
[3]  Rösler, U. (1992) A Fixed Point Theorem for Distributions. Stochastic Processes and their Applications, 42, 195-214.
https://doi.org/10.1016/0304-4149(92)90035-o
[4]  Kuhlbusch, D. (2004) On Weighted Branching Processes in Random Environment. Stochastic Processes and their Applications, 109, 113-144.
https://doi.org/10.1016/j.spa.2003.09.004
[5]  Liang, X. and Liu, Q. (2013) Weighted Moments of the Limit of a Branching Process in a Random Environment. Proceedings of the Steklov Institute of Mathematics, 282, 127-145.
https://doi.org/10.1134/s0081543813060126
[6]  Hao, S. (2017) Limit Theorems for Multiplicative Cascades in a Random Environment. Taiwanese Journal of Mathematics, 21, 943-959.
https://doi.org/10.11650/tjm/5216
[7]  邓琳, 陈祁欢, 鲁展. 随机环境加权分枝过程的方差和Fuk-Nagaev型不等式[J]. 应用数学进展, 2023, 12(10): 4183-4188.
[8]  鲁展, 彭聪, 邓琳. 随机环境中加权分枝过程的偏差不等式[J]. 湖北文理学院学报(自然科学版), 2023, 44(11): 5-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133