|
特大城市共享单车出行特征变化分析
|
Abstract:
基于python结合纽约市共享单车订单数据定量分析共享单车在2018~2023年的出行特征变化,通过出行总量、出行时段、出行用户、出行次数、出行时长、出行空间变化来分析共享单车出行特征。研究发现,2018~2023年骑行总量在总体上呈上升趋势;2018~2023年的共享单车出行具有明显的早晚高峰特征;纽约的共享单车用户多为本地常住居民;从第一季度到第三季度骑行次数在增加,而第三季度到第四季度骑行次数在减少;骑行时长主要集中在10~20分钟,随着骑行时长的延长,出行次数在下降;用户出行热门地点是医院、银行、公园、广场、商场以及餐厅。并通过对2021年1月30日~8月31日深圳共享单车数据以及2020年12月21日~12月25日厦门共享单车数据的分析发现有桩和无桩共享单车之间存在着相通的规律。研究共享单车出行特征的变化,可以揭示城市公共交通变化的规律,从而推动公共交通系统的发展。
Based on python combined with New York City’s shared bicycle order data, the paper quantitatively analyzes the change of shared bicycle travel characteristics in 2018~2023, through the total number of trips, travel time, travel users, the number of trips, travel duration, and travel spatial changes to analyze the shared bicycle travel characteristics. It is found that the total number of rides in 2018~2023 shows an upward trend in general; the bike-sharing trips in 2018~2023 have obvious morning and evening peak characteristics; most of the bike-sharing users in New York are local permanent residents; the number of rides is increasing from the first quarter to the third quarter, while the number of rides is decreasing from the third quarter to the fourth quarter; and the length of rides is mainly concentrated in the range of 10~20 minutes. The number of trips is decreasing as the length of the ride increases; users travel to hospitals, banks, parks, squares, shopping malls, and restaurants. And through the analysis of Shenzhen’s shared bike data from 30 January~31 August 2021 and Xiamen’s shared bike data from 21 December~25 December 2020, it is found that there is a common pattern between the staked and stakeless shared bikes. Studying the changes in the travelling characteristics of shared bicycles can reveal the laws of changes in urban public transport and thus promote the development of public transport systems.
[1] | 塔娜, 柴彦威. 理解中国城市生活方式: 基于时空行为的研究框架[J]. 人文地理, 2019, 34(2): 17-23. |
[2] | Zhang, Y., Lin, D. and Mi, Z. (2019) Electric Fence Planning for Dockless Bike-Sharing Services. Journal of Cleaner Production, 206, 383-393. https://doi.org/10.1016/j.jclepro.2018.09.215 |
[3] | 项振海, 李青, 洪良, 等. 城市建成环境对共享单车出行影响的时空特征——以深圳市为例[J/OL]. 热带地理: 1-12. https://doi.org/10.13284/j.cnki.rddl.003829, 2024-02-20. |
[4] | 丁月, 郝泽政, 张翼然, 等. 北京市核心区共享单车骑行时空特征分析[J]. 北京测绘, 2023, 37(2): 295-301. |
[5] | 李福, 徐良杰, 陈国俊, 等. 共享单车用户骑行起讫点时空特征分析[J]. 交通信息与安全, 2022, 40(3): 146-153, 170. |
[6] | Böcker, L., Anderson, E., Uteng, T.P. and Throndsen, T. (2020) Bike Sharing Use in Conjunction to Public Transport: Exploring Spatiotemporal, Age and Gender Dimensions in Oslo, Norway. Transportation Research Part A: Policy and Practice, 138, 389-401. https://doi.org/10.1016/j.tra.2020.06.009 |
[7] | Schaefer, K.J., Tuitjer, L. and Levin-Keitel, M. (2021) Transport Disrupted—Substituting Public Transport by Bike or Car under Covid 19. Transportation Research Part A: Policy and Practice, 153, 202-217. https://doi.org/10.1016/j.tra.2021.09.002 |
[8] | Ziedan, A., Darling, W., Brakewood, C., Erhardt, G. and Watkins, K. (2021) The Impacts of Shared E-Scooters on Bus Ridership. Transportation Research Part A: Policy and Practice, 153, 20-34. https://doi.org/10.1016/j.tra.2021.08.019 |
[9] | 张振海, 戴技才. 基于GIS的共享单车出行变化分析[J]. 科技创新与应用, 2023, 13(13): 18-22. |
[10] | 王亚歌, 王洪海, 韦良芬. 多种共享出行方式的时空数据可视化分析[J]. 现代信息科技, 2023, 7(17): 15-20. |
[11] | 陈冰郎, 喻冰洁. 共享单车出行特征及影响因素的空间异质性研究——以成都市为例[C]//中国城市规划学会. 人民城市, 规划赋能——2023中国城市规划年会论文集(06城市交通规划). 武汉: 中国城市规划学会, 2023: 11. |