全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高海拔地区心肌损伤心脏磁共振技术研究进展
Research Progress on Cardiac Magnetic Resonance Imaging Technology for Myocardial Injury in High-Altitude Areas

DOI: 10.12677/acm.2024.1482313, PP. 1003-1009

Keywords: 心脏磁共振,高海拔地区,心肌损伤
Cardiac Magnetic Resonance Imaging
, Regions at High Altitudes, Damage to the Heart

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着精准医学和人工智能的迅速发展,对心脏相关疾病的研究也日益深入,关于心脏的评估已从早期的解剖结构检查逐渐转向心肌功能和活性的评价。长期生活在高海拔地区低氧环境下易导致心肌损伤,严重情况甚至可引发高原性心脏病(high altitude heart disease, HAHD)。早期心肌损伤目前比较难以诊断,且预后较差,因此及时进行诊断和治疗对高海拔地区居民的健康至关重要。心脏磁共振成像(cardiac magnetic resonance imaging, CMR)能敏感地检测出高海拔地区心肌早期结构和功能的变化,可为临床提供早期诊断和治疗的科学依据,同时在心脏相关疾病疗效监测、用药指导和预后判断等方面发挥着重要作用。本研究对高海拔地区心脏早期损伤的临床特点、损伤机制、心脏磁共振评价方法以及临床意义进行综述。
Research on heart-related disorders has become more thorough as precision medicine and artificial intelligence have advanced quickly. Assessment of myocardial function and activity has gradually replaced early anatomical structure testing in the evaluation of the heart. Living in low oxygen settings for an extended period of time at high altitudes can easily cause cardiac damage. In extreme circumstances, it may result high altitude heart disease (HAHD). For the health of people living in high-altitude regions, prompt diagnosis and treatment are essential because early myocardial damage is currently difficult to diagnose and has a bad prognosis. In high-altitude environments, cardiac magnetic resonance imaging (CMRI) can accurately identify early alterations in the structure and function of the heart, offering a scientific foundation for prompt diagnosis and treatment in clinical settings. It is also crucial for prognosis prediction, drug guidance, and evaluating the effectiveness of heart-related conditions. The clinical features, mechanisms of injury, techniques for evaluating cardiac magnetic resonance imaging, and clinical importance of early heart injury in high-altitude regions are reviewed in this paper.

References

[1]  Steele, A.R., Tymko, M.M., Meah, V.L., Simpson, L.L., Gasho, C., Dawkins, T.G., et al. (2021) Global REACH 2018: Volume Regulation in High-Altitude Andeans with and without Chronic Mountain Sickness. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 321, R504-R512.
https://doi.org/10.1152/ajpregu.00102.2021
[2]  Leiner, T., Bogaert, J., Friedrich, M.G., Mohiaddin, R., Muthurangu, V., Myerson, S., et al. (2020) SCMR Position Paper (2020) on Clinical Indications for Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 22, 76-79.
https://doi.org/10.1186/s12968-020-00682-4
[3]  Han, S., Zhao, L., Ma, S., Chen, Z., Wu, S., Shen, M., et al. (2020) Alterations to Cardiac Morphology and Function among High-Altitude Workers: A Retrospective Cohort Study. Occupational and Environmental Medicine, 77, 447-453.
https://doi.org/10.1136/oemed-2019-106108
[4]  Doutreleau, S., Ulliel-Roche, M., Hancco, I., Bailly, S., Oberholzer, L., Robach, P., et al. (2022) Cardiac Remodelling in the Highest City in the World: Effects of Altitude and Chronic Mountain Sickness. European Journal of Preventive Cardiology, 29, 2154-2162.
https://doi.org/10.1093/eurjpc/zwac166
[5]  Lu, K.J., Chen, J.X.C., Profitis, K., Kearney, L.G., DeSilva, D., Smith, G., et al. (2014) Right Ventricular Global Longitudinal Strain Is an Independent Predictor of Right Ventricular Function: A Multimodality Study of Cardiac Magnetic Resonance Imaging, Real Time Three‐Dimensional Echocardiography and Speckle Tracking Echocardiography. Echocardiography, 32, 966-974.
https://doi.org/10.1111/echo.12783
[6]  Wang, F.F., Bao, H.H., Li, C.W., et al. (2016) Diffusion Tensor Imaging in High Altitude Adults and Sea Level Normal Adults: An Analysis Using Tract-Based Spatial Statistics. Clinical Radiology, 35, 1341-1346.
[7]  范媛媛, 吴岑岑, 祖凌云. 高海拔环境对心血管系统生理指标及疾病的影响[J]. 中国循证心血管医学杂志, 2021, 13(10): 1267-1269.
[8]  宋晶, 陈友三, 孔祥闯, 等. 肺动脉高压患者左室心肌应变的MRI研究[J]. 临床放射学杂志, 2020, 39(5): 913-918.
[9]  Cao, J., Li, S., Cui, L., Zhu, K., Huo, H. and Liu, T. (2022) Biventricular Myocardial Strain Analysis in Patients with Pulmonary Arterial Hypertension Using Cardiac Magnetic Resonance Tissue-Tracking Technology. Journal of Clinical Medicine, 11, Article No. 2230.
https://doi.org/10.3390/jcm11082230
[10]  van Everdingen, W.M., Zweerink, A., Nijveldt, R., Salden, O.A.E., Meine, M., Maass, A.H., et al. (2017) Comparison of Strain Imaging Techniques in CRT Candidates: CMR Tagging, CMR Feature Tracking and Speckle Tracking Echocardiography. The International Journal of Cardiovascular Imaging, 34, 443-456.
https://doi.org/10.1007/s10554-017-1253-5
[11]  蒋月薪, 郭应坤. 心脏磁共振技术在高原心脏病早期心肌损伤中的应用研究进展[J]. 实用临床医药杂志, 2021, 25(11): 120-123+128.
[12]  Alexis, J.A., Costello, B., Iles, L.M., Ellims, A.H., Hare, J.L. and Taylor, A.J. (2016) Assessment of the Accuracy of Common Clinical Thresholds for Cardiac Morphology and Function by Transthoracic Echocardiography. Journal of Echocardiography, 15, 27-36.
https://doi.org/10.1007/s12574-016-0322-4
[13]  颜春龙, 马金凤, 齐先龙, 等. 3.0T MRI对高原与平原地区健康正常人心脏结构及功能的对比研究[J]. 磁共振成像, 2020, 11(7): 526-530.
[14]  欧伟, 梁羽, 卿羽, 等. 短期间歇性低氧暴露对小鼠心肌氧化应激及心脏功能的影响研究[J]. 四川大学学报(医学版), 2022, 53(1): 98-104.
[15]  陈慧勤, 林默君, 刘晓如. 慢性低氧对大鼠左右心室的功能及TRPC亚家族表达的影响[J]. 中国应用生理学杂志, 2014, 30(3): 274-278.
[16]  Stembridge, M., Ainslie, P.N. and Shave, R. (2014) Short‐Term Adaptation and Chronic Cardiac Remodelling to High Altitude in Lowlander Natives and Himalayan Sherpa. Experimental Physiology, 100, 1242-1246.
https://doi.org/10.1113/expphysiol.2014.082503
[17]  Boushel, R., Calbet, J.L., Rådegran, G., Sondergaard, H., Wagner, P.D. and Saltin, B. (2001) Parasympathetic Neural Activity Accounts for the Lowering of Exercise Heart Rate at High Altitude. Circulation, 104, 1785-1791.
https://doi.org/10.1161/hc4001.097040
[18]  李政波, 张进, 王雪. 高原低氧环境短期暴露对官兵心脏的影响[J]. 西北国防医学杂志, 2019, 40(3): 174-178.
[19]  张来平. 急性高原暴露对肾素-血管紧张素-醛固酮系统和血流动力学的影响及其与AMS的关系[D]: [硕士学位论文]. 重庆: 中国人民解放军陆军军医大学, 2019.
[20]  孔晓婷, 汪元汲, 沈国双, 等. 高原低氧环境下对人体的影响及药物干预研究进展[J]. 现代医药卫生, 2022, 38(9): 1523-1527.
[21]  Messroghli, D.R., Moon, J.C., Ferreira, V.M., Grosse-Wortmann, L., He, T., Kellman, P., et al. (2016) Clinical Recommendations for Cardiovascular Magnetic Resonance Mapping of T1, T2, T2* and Extracellular Volume: A Consensus Statement by the Society for Cardiovascular Magnetic Resonance (SCMR) Endorsed by the European Association for Cardiovascular Imaging (EACVI). Journal of Cardiovascular Magnetic Resonance, 19, 75-81.
https://doi.org/10.1186/s12968-017-0389-8
[22]  Yang, F., Zhang, Z., Ren, W., et al. (2019) Magnetic Resonance Imaging in Evaluating Myocardial Tissue Characteristics and the Clinical Application: An Update. Academic Journal of Second Military Medical University, 40, 243-249.
[23]  Ganesan, A.N., Gunton, J., Nucifora, G., McGavigan, A.D. and Selvanayagam, J.B. (2018) Impact of Late Gadolinium Enhancement on Mortality, Sudden Death and Major Adverse Cardiovascular Events in Ischemic and Nonischemic Cardiomyopathy: A Systematic Review and Meta-Analysis. International Journal of Cardiology, 254, 230-237.
https://doi.org/10.1016/j.ijcard.2017.10.094
[24]  Halliday, B.P., Baksi, A.J., Gulati, A., Ali, A., Newsome, S., Izgi, C., et al. (2019) Outcome in Dilated Cardiomyopathy Related to the Extent, Location, and Pattern of Late Gadolinium Enhancement. JACC: Cardiovascular Imaging, 12, 1645-1655.
https://doi.org/10.1016/j.jcmg.2018.07.015
[25]  Pereda, D., García-Lunar, I., Sierra, F., Sánchez-Quintana, D., Santiago, E., Ballesteros, C., et al. (2016) Magnetic Resonance Characterization of Cardiac Adaptation and Myocardial Fibrosis in Pulmonary Hypertension Secondary to Systemic-to-Pulmonary Shunt. Circulation: Cardiovascular Imaging, 9, 45-66.
https://doi.org/10.1161/circimaging.116.004566
[26]  Li, M., Wang, G.H., Bao, H.H., et al. (2024) Assessment of Biventricular Function in Patients with Chronic Mountain Sickness by Cardiac Magnetic Resonance T1 Mapping and Feature Tracking Technique. Research Square, 1, 1-14.
[27]  Mou, A., Zhang, C., Li, M., Jin, F., Song, Q., Liu, A., et al. (2017) Evaluation of Myocardial Microcirculation Using Intravoxel Incoherent Motion Imaging. Journal of Magnetic Resonance Imaging, 46, 1818-1828.
https://doi.org/10.1002/jmri.25706
[28]  Wu, L., Chen, B., Yao, Q., Ou, Y., Wu, R., Jiang, M., et al. (2016) Quantitative Diffusion-Weighted Magnetic Resonance Imaging in the Assessment of Myocardial Fibrosis in Hypertrophic Cardiomyopathy Compared with T1 Mapping. The International Journal of Cardiovascular Imaging, 32, 1289-1297.
https://doi.org/10.1007/s10554-016-0909-x
[29]  Liao, P., Lin, G., Tsai, S., Wang, C., Juan, Y., Lin, Y., et al. (2016) Myocardial Triglyceride Content at 3 T Cardiovascular Magnetic Resonance and Left Ventricular Systolic Function: A Cross-Sectional Study in Patients Hospitalized with Acute Heart Failure. Journal of Cardiovascular Magnetic Resonance, 18, 9.
https://doi.org/10.1186/s12968-016-0228-3
[30]  Zhou, Z., Nguyen, C., Chen, Y., Shaw, J.L., Deng, Z., Xie, Y., et al. (2016) Optimized CEST Cardiovascular Magnetic Resonance for Assessment of Metabolic Activity in the Heart. Journal of Cardiovascular Magnetic Resonance, 19, 95.
https://doi.org/10.1186/s12968-017-0411-1
[31]  Holloway, C.J., Montgomery, H.E., Murray, A.J., Cochlin, L.E., Codreanu, I., Hopwood, N., et al. (2010) Cardiac Response to Hypobaric Hypoxia: Persistent Changes in Cardiac Mass, Function, and Energy Metabolism after a Trek to Mt. Everest Base Camp. The FASEB Journal, 25, 792-796.
https://doi.org/10.1096/fj.10-172999

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133