Ralstonia solanacearum, the causative agent of bacterial wilt, is a soil-borne pathogen that poses a widespread threat to plants in the Solanaceae family. To elucidate the mechanism by which limonene exerts its effects on R. solanacearum, we first assessed the impact of limonene on the physiological indicators of the pathogen and subsequently analyzed its transcriptome and metabolome. Our findings indicate that limonene has a potent inhibitory effect on R. solanacearum, and it also suppresses the formation of the bacterial community biofilm. Limonene primarily regulates the terpene biosynthesis pathway in R. solanacearum, thereby potentially affecting signal transduction in the pathogen and disrupting its normal growth and development. These results significantly enhance our understanding of limonene’s response to the induction of bacterial wilt and provide a reference for further prevention and control of R. solanacearum.
References
[1]
Archana, T., Kamalakannan, A., Gopalakrishnan, C., Johnson, I., Rajendran, L., Varanavasiappan, S., et al. (2024) Detection of Indian Isolates of Soil and Tuber Borne Ralstonia solanacearum (Smith) Infecting Potato (Solanum tuberosum L.) through a Colorimetric LAMP Assay. https://doi.org/10.1007/s11540-024-09699-z
[2]
Buddenhagen, I. and Kelman, A. (1964) Biological and Physiological Aspects of Bacterial Wilt Caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 2, 203-230. https://doi.org/10.1146/annurev.py.02.090164.001223
[3]
Chen, D., Kamran, M., Chen, S., Xing, J., Qu, Z., Liu, C., et al. (2023) Two Nucleotide Sugar Transporters Are Important for Cell Wall Integrity and Full Virulence of Magnaporthe oryzae. Molecular Plant Pathology, 24, 374-390. https://doi.org/10.1111/mpp.13304
[4]
Ciofu, O., Moser, C., Jensen, P.Ø. and Høiby, N. (2022) Tolerance and Resistance of Microbial Biofilms. Nature Reviews Microbiology, 20, 621-635. https://doi.org/10.1038/s41579-022-00682-4
[5]
de Groot, A. (2019) Limonene Hydroperoxides. Dermatitis, 30, 331-335. https://doi.org/10.1097/der.0000000000000465
[6]
de Souza, M.A., da Silva, L., Macêdo, M.J.F., Lacerda-Neto, L.J., dos Santos, M.A.C., Coutinho, H.D.M., et al. (2019) Adulticide and Repellent Activity of Essential Oils against Aedes aegypti (Diptera: Culicidae)—A Review. South African Journal of Botany, 124, 160-165. https://doi.org/10.1016/j.sajb.2019.05.007
[7]
Dias, A.L.B., Sousa, W.C., Batista, H.R.F., Alves, C.C.F., Souchie, E.L., Silva, F.G., et al. (2020) Chemical Composition and in Vitro Inhibitory Effects of Essential Oils from Fruit Peel of Three Citrus Species and Limonene on Mycelial Growth of Sclerotinia sclerotiorum. Brazilian Journal of Biology, 80, 460-464. https://doi.org/10.1590/1519-6984.216848
[8]
Eddin, L.B., Jha, N.K., Meeran, M.F.N., Kesari, K.K., Beiram, R. and Ojha, S. (2021) Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules, 26, Article 4535. https://doi.org/10.3390/molecules26154535
[9]
Fierascu, R.C., Fierascu, I.C., Dinu-Pirvu, C.E., Fierascu, I. and Paunescu, A. (2019) The Application of Essential Oils as a Next-Generation of Pesticides: Recent Developments and Future Perspectives. Zeitschrift für Naturforschung C, 75, 183-204. https://doi.org/10.1515/znc-2019-0160
[10]
García, R.O., Kerns, J.P. and Thiessen, L. (2019) Ralstonia solanacearum Species Complex: A Quick Diagnostic Guide. Plant Health Progress, 20, 7-13. https://doi.org/10.1094/php-04-18-0015-dg
[11]
Gettys, L.A., Thayer, K.L. and Sigmon, J.W. (2021) Evaluating the Effects of Acetic Acid and D-Limonene on Four Aquatic Plants. HortTechnology, 31, 225-233. https://doi.org/10.21273/horttech04769-20
[12]
Han, L., Zhang, G., Miao, G., Zhang, X. and Feng, J. (2015) Streptomyces kanasensis Sp. Nov., an Antiviral Glycoprotein Producing Actinomycete Isolated from Forest Soil around Kanas Lake of China. Current Microbiology, 71, 627-631. https://doi.org/10.1007/s00284-015-0900-0
[13]
Hayward, A.C. (1991) Biology and Epidemiology of Bacterial Wilt Caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 29, 65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
[14]
Jian, R., Lin, Y., Li, Y., Wu, W., Ren, X., Liang, Z., et al. (2022) Larvicidal Activity of Two Rutaceae Plant Essential Oils and Their Constituents against Aedes albopictus (Diptera: Culicidae) in Multiple Formulations. Journal of Medical Entomology, 59, 1669-1677. https://doi.org/10.1093/jme/tjac083
[15]
Joergensen, R.G. (2018) Amino Sugars as Specific Indices for Fungal and Bacterial Residues in Soil. Biology and Fertility of Soils, 54, 559-568. https://doi.org/10.1007/s00374-018-1288-3
[16]
Karim, Z., Hossain, M. and Begum, M. (2018) Ralstonia solanacearum: A Threat to Potato Production in Bangladesh. Fundamental and Applied Agriculture, 3, 407-421. https://doi.org/10.5455/faa.280361
[17]
Kong, H.G., Bae, J.Y., Lee, H.J., Joo, H.J., Jung, E.J., Chung, E., et al. (2014) Induction of the Viable but Nonculturable State of Ralstonia solanacearum by Low Temperature in the Soil Microcosm and Its Resuscitation by Catalase. PLOS ONE, 9, e109792. https://doi.org/10.1371/journal.pone.0109792
[18]
Koo, H., Allan, R.N., Howlin, R.P., Stoodley, P. and Hall-Stoodley, L. (2017) Targeting Microbial Biofilms: Current and Prospective Therapeutic Strategies. Nature Reviews Microbiology, 15, 740-755. https://doi.org/10.1038/nrmicro.2017.99
[19]
Kurabachew, H. and Ayana, G. (2017) Bacterial Wilt Caused by Ralstonia solanacearum in Ethiopia: Statusa and Management Approaches: A Review. International Journal of Phytopathology, 5, 107-119. https://doi.org/10.33687/phytopath.005.03.1829
[20]
Liang, C., Lv, H., Liu, W., Wang, Q., Yao, X., Li, X., et al. (2024) Mechanism of the Adverse Outcome of Chlorella Vulgaris Exposure to Diethyl Phthalate: Water Environmental Health Reflected by Primary Producer Toxicity. Science of the Total Environment, 912, Article 168876. https://doi.org/10.1016/j.scitotenv.2023.168876
[21]
Liaqat, I., Riaz, N., Saleem, Q., Tahir, H.M., Arshad, M. and Arshad, N. (2018) Toxicological Evaluation of Essential Oils from Some Plants of Rutaceae Family. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID: 4394687. https://doi.org/10.1155/2018/4394687
[22]
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., et al. (2012) Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Molecular Plant Pathology, 13, 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
[23]
Mendoza-Poudereux, I., Kutzner, E., Huber, C., Segura, J., Eisenreich, W. and Arrillaga, I. (2015) Metabolic Cross-Talk between Pathways of Terpenoid Backbone Biosynthesis in Spike Lavender. Plant Physiology and Biochemistry, 95, 113-120. https://doi.org/10.1016/j.plaphy.2015.07.029
[24]
Parsons, J.W. (1981) Chemistry and Distribution of Amino Sugars in Soils and Soil Organisms. CRC Press.
[25]
Patil, V.U., Gopal, J. and Singh, B.P. (2012) Improvement for Bacterial Wilt Resistance in Potato by Conventional and Biotechnological Approaches. Agricultural Research, 1, 299-316. https://doi.org/10.1007/s40003-012-0034-6
[26]
Rinaldi, M.A., Ferraz, C.A. and Scrutton, N.S. (2022) Alternative Metabolic Pathways and Strategies to High-Titre Terpenoid Production in Escherichia coli. Natural Product Reports, 39, 90-118. https://doi.org/10.1039/d1np00025j
[27]
Tsumori, C., Matsuo, S., Murai, Y. and Kai, K. (2023) Quorum Sensing-Dependent Invasion of Ralstonia solanacearum into Fusarium oxysporum Chlamydospores. Microbiology Spectrum, 11, e00036-23. https://doi.org/10.1128/spectrum.00036-23
[28]
van Elsas, J.D., Kastelein, P., van Bekkum, P., van der Wolf, J.M., de Vries, P.M. and van Overbeek, L.S. (2000) Survival of Ralstonia solanacearum Biovar 2, the Causative Agent of Potato Brown Rot, in Field and Microcosm Soils in Temperate Climates. Phytopathology, 90, 1358-1366. https://doi.org/10.1094/phyto.2000.90.12.1358
[29]
Wang, D., Qiu, D., Shi, L., Pan, H., Li, Y., Sun, J., et al. (2015) Identification of Insecticidal Constituents of the Essential Oils of Dahlia pinnatacav. against Sitophilus zeamais and Sitophilus oryzae. Natural Product Research, 29, 1748-1751. https://doi.org/10.1080/14786419.2014.998218
[30]
Yang, L., Wang, R., Lin, W., Li, B., Jin, T., Weng, Q., et al. (2024) Efficacy of 2,4-Di-tert-Butylphenol in Reducing Ralstonia solanacearum Virulence: Insights into the Underlying Mechanisms. ACS Omega, 9, 4647-4655. https://doi.org/10.1021/acsomega.3c07887
[31]
Yuan, X., Xiong, J., Wu, X., Ta, N., Liu, S., Li, Z., et al. (2024) Ultrasmall Ce-Based Metal-Organic Frameworks Nanozyme with Hydrolytic Activity for Boosting Antibiofilm Therapy. Chemical Engineering Journal, 480, Article 148246. https://doi.org/10.1016/j.cej.2023.148246