The practice of soccer involves carrying-out actions of high intensity, which demand a great generation of eccentric strength, which in turn results in an increase in the inflammatory response after training practice and game matches. The study aimed to investigate, in combination and individually, the association of 28 polymorphisms with the inflammatory responses of soccer athletes. The sample consisted of 47 male under-20 soccer athletes who belong to clubs in the first division of Brazilian soccer. Blood samples were collected at Pre, and 03, 24, and 48 hours after the training session to evaluate the inflammatory responses (hematological analyzes (hemogram), creatine phosphokinase (CK), high sensitivity quantitative C-reactive protein (CRP), tumor necrosis factor-alpha, (TNFα), interleukin 6 (IL-6) and insulin-like growth factor 1 (IGF-1)). DNA was obtained through scraping of buccal cells, where a sterile swab was rubbed on the inner side of the mouth of each participant 06 times. The database was built using the TruSeq DNA PCRFree kit (Illumina?) and the Covaris equipment for shearing genomic DNA (gDNA) by ultrasound. Of the analyzed SNPs, 09 (ACTN3 rs1815739, COL5A1 rs12722, COL5A1 rs3196378, HGF rs5745697, IGF1 rs35767, IL-6 rs1800795, MMP3 rs679620, SLC30A8 rs13266634, SOX15 rs4227) were individually associated with biomarkers and 07 SNPs, (COL5A1 rs12722, COL5A1 rs3196378, COL5A1 rs1800012, HGF rs5745697, IGF1 rs35767, IL-6 rs1800795 and MMP3 rs679620) analyzed in combination, explained 16% to 40% of the variation of inflammatory responses in soccer athletes. The results suggest that the genotypic profile can be taken into account for a more individualized distribution of the training load, along with the elaboration of recovery strategies for high-level athletes between training sessions and games of high physical and physiological demand.
References
[1]
Bangsbo, J. (1994) The Physiology of Soccer—With Special Reference to Intense Intermittent Exercise. Blackwell Scientific, Scandinavia.
[2]
Rienzi, E., Drust, B., Reilly, T., Carter, Carter, J.E. and Martin, A. (2000) Investigation of Anthropometric and Work-Rate Profiles of Elite South American International Soccer Players. JournalofSportsMedicineandPhysicalFitness, 40, 162-169.
[3]
Bloomfield, J., Polman, R. and O’Donoghue, P. (2007) Physical Demands of Different Positions in FA Premier League Soccer. JournalofSportsScienceandMedicine, 6, 63-70.
[4]
Little, T. and Williams, A.G. (2006) Suitability of Soccer Training Drills for Endurance Training. JournalofStrengthandConditioningResearch, 20, 316-319. https://doi.org/10.1519/00124278-200605000-00014
[5]
Stølen, T., Chamari, K., Castagna, C. and Wisløff, U. (2005) Physiology of Soccer. SportsMedicine, 35, 501-536. https://doi.org/10.2165/00007256-200535060-00004
[6]
Castagna, C., Varley, M., Povoas Araujo, S.C. and D’Ottavio, S. (2017) The Evaluation of the Match External Load in Soccer: Methods Comparison. InternationalJournalofSportsPhysiologyandPerformance, 12, 490-495. https://doi.org/10.1123/ijspp.2016-0160
[7]
Nosaka, K., Newton, M.J. and Sacco, P. (2005) Attenuation of Protective Effect against Eccentric Exercise-Induced Muscle Damage. CanadianJournalofAppliedPhysiology, 30, 529-542. https://doi.org/10.1139/h05-139
[8]
Armstrong, R.B. (1984) Mechanisms of Exercise-Induced Delayed Onset Muscular Soreness: A Brief Review. Medicine&ScienceinSports&Exercise, 16, 529-538. https://doi.org/10.1249/00005768-198412000-00002
[9]
Armstrong, R.B., Warren, G.L. and Warren, J.A. (1991) Mechanisms of Exercise-Induced Muscle Fibre Injury. SportsMedicine, 12, 184-207. https://doi.org/10.2165/00007256-199112030-00004
[10]
Tricoli, V. (2001) Mecanismos envolvidos na etiologia da dor muscular tardia. RevistaBrasileiradeCiênciaeMovimento, 9, 39-44.
[11]
Foschini, D., Prestes, J. and Charro, M.A. (2007) Relação entre exercício físico, dano muscular e dor muscular de início tardio. RevistaBrasileiradeCineantropometriaeDesempenhoHumano, 9, 101-106.
[12]
Souglis, A.G., Papapanagiotou, A., Bogdanis, G.C., Travlos, A.K., Apostolidis, N.G. and Geladas, N.D. (2015) Comparison of Inflammatory Responses to a Soccer Match between Elite Male and Female Players. TheJournalofStrength&ConditioningResearch, 29, 1227-1233. https://doi.org/10.1519/JSC.0000000000000767
[13]
Ispirlidis, I., Fatouros, I.G., Jamurtas, A.Z., Nikolaidis, M.G., Michailidis, I., Douroudos, I., Margonis, K., Chatzinikolaou, A., Kalistratos, E., Katrabasas, I. and Alexiou, V. (2008) Time-Course of Changes in Inflammatory and Performance Responses Following a Soccer Game. ClinicalJournalofSportMedicine, 18, 423-431. https://doi.org/10.1097/JSM.0b013e3181818e0b
[14]
Baumert, P., Lake, M.J., Stewart, C.E., Drust, B. and Erskine, R.M. (2016) Genetic Variation and Exercise-Induced Muscle Damage: Implications for Athletic Performance, Injury and Ageing. EuropeanJournalofAppliedPhysiology, 116, 1595-1625. https://doi.org/10.1007/s00421-016-3411-1
[15]
Ahmetov, I.I., Kulemin, N.A., Popov, D.V., Naumov, V.A., Akimov, E.B., Bravy, Y.R., Egorova, E.S., Galeeva, A.A., Generozov, E.V., Kostryukova, E.S. and Larin, A.K. (2015) Genome-Wide Association Study Identifies Three Novel Genetic Markers Associated with Elite Endurance Performance. BiologyofSport, 32, 3-9. https://doi.org/10.5604/20831862.1124568
[16]
Larruskain, J.O.N., Celorrio, D., Barrio, I., Odriozola, A., Gil, S.M., Fernandez-Lopez, J.R., Nozal, R., Ortuzar, I., Lekue, J.A. and Aznar, J.M. (2018) Genetic variants and Hamstring Injury in Soccer: An Association and Validation Study. Medicine&ScienceinSports&Exercise, 50, 361-368. https://doi.org/10.1249/MSS.0000000000001434
[17]
Seto, J.T., Lek, M., Quinlan, K.G., Houweling, P.J., Zheng, X.F., Garton, F., MacArthur, D.G., Raftery, J.M., Garvey, S.M., Hauser, M.A. and Yang, N. (2011) Deficiency of α-Actinin-3 Is Associated with Increased Susceptibility to Contraction-Induced Damage and Skeletal Muscle Remodeling. HumanMolecularGenetics, 20, 2914-2927. https://doi.org/10.1093/hmg/ddr196
[18]
Kibler, W.B., Chandler, T.J. and Stracener, E.S. (1992) Musculoskeletal Adaptations and Injuries Due to Overtraining. ExerciseandSportSciencesReviews, 20, 99-126. https://doi.org/10.1249/00003677-199200200-00004
[19]
Clansey, A.C., Hanlon, M., Wallace, E.S. and Lake, M.J. (2012) Effects of Fatigue on Running Mechanics Associated with Tibial Stress Fracture Risk. Medicine&ScienceinSports&Exercise, 10, 1917-1923. https://doi.org/10.1249/MSS.0b013e318259480d
[20]
Kambouris, M., Del Buono, A. and Maffulli, N. (2014) Genomics DNA Profiling in Elite Professional Soccer Players: A Pilot Study. TraditionalMedicine, 9, 18-22.
[21]
Ehlert, T., Simon, P. and Moser, D.A. (2013) Epigenetics in Sports. SportsMedicine, 43, 93-110. https://doi.org/10.1007/s40279-012-0012-y
[22]
Ruiz, J.R., Arteta, D., Buxens, A., Artieda, M., Gómez-Gallego, F., Santiago, C., Yvert, T., Morán, M. and Lucia, A. (2010) Can We Identify a Power-Oriented Polygenic Profile? JournalofAppliedPhysiology, 108, 561-566. https://doi.org/10.1152/japplphysiol.01242.2009
[23]
Hughes, D.C., Day, S.H., Ahmetov, I.I. and Williams, A.G. (2011) Genetics of Muscle Strength and Power: Polygenic Profile Similarity Limits Skeletal Muscle Performance. JournalofSportsScience, 29, 1425-1434. https://doi.org/10.1080/02640414.2011.597773
[24]
Maciejewska-Skrendo, A., Sawczuk, M., Cięszczyk, P. and Ahmetov, I.I. (2019) Genes and Power Athlete Status. In: Barh, D. and Ahmetov, I., Eds., Sports, Exercise, andNutritionalGenomics:CurrentStatusandFutureDirections, Academic Press, Cambridge, 41-72. https://doi.org/10.1016/B978-0-12-816193-7.00003-8
[25]
Ahmetov, I.I., Mozhayskaya, I.A., Lyubaeva, E.V., Vinogradova, O.L. and Rogozkin, V.A. (2008) PPARG Gene Polymorphism and Locomotor Activity in Humans. BulletinofExperimentalBiologyandMedicine, 146, 630-632. https://doi.org/10.1007/s10517-009-0364-y
[26]
Roth, S.M., Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. and Hurley, B.F. (2008) The ACTN3 R577X Nonsense Allele Is Under-Represented in Elite-Level Strength Athletes. EuropeanJournalofHumanGenetics, 16, 391-394. https://doi.org/10.1038/sj.ejhg.5201964
[27]
Fedotovskaya, O.N., Popov, D.V., Vinogradova, O.L. and Akhmetov, I.I. (2012) Association of Muscle-Specific Creatine Kinase (CKMM) Gene Polymorphism with Physical Performance of Athletes. HumanPhysiology, 38, 89-93. https://doi.org/10.1134/S0362119712010082
Zarebska, A., Ahmetov, I.I., Sawczyn, S., Weiner, A.S., Kaczmarczyk, M., Ficek, K., Maciejewska-Karlowska, A., Sawczuk, M., Leonska-Duniec, A., Klocek, T. and Voronina, E.N. (2014) Association of the MTHFR 1298A>C (rs1801131) Polymorphism with Speed and Strength Sports in Russian and Polish Athletes. JournalofSportsScience, 32, 375-382. https://doi.org/10.1080/02640414.2013.825731
[30]
Gineviciene, V., Jakaitiene, A., Aksenov, M.O., Aksenova, A.V., Druzhevskaya, A.M., Astratenkova, I.V., Egorova, E.S., Gabdrakhmanova, L.J., Tubelis, L., Kucinskas, V. and Utkus, A. (2016) Association Analysis of ACE, ACTN3 and PPARGC1A Gene Polymorphisms in Two Cohorts of European Strength and Power Athletes. BiologyofSports, 33, 199-206. https://doi.org/10.5604/20831862.1201051
[31]
Ben-Zaken, S., Meckel, Y., Nemet, D. and Eliakim, A. (2013) Can IGF-I Polymorphism Affect Power and Endurance Athletic Performance? Growth Hormone & IGF Research, 23, 175-178. https://doi.org/10.1016/j.ghir.2013.06.005
[32]
Grishina, E.E., Zmijewski, P., Semenova, E.A., Cięszczyk, P., Humińska-Lisowska, K., Michałowska-Sawczyn, M., Maculewicz, E., Crewther, B., Orysiak, J., Kostryukova, E.S. and Kulemin, N.A. (2019) Three DNA Polymorphisms Previously Identified as Markers for Handgrip Strength Are Associated with Strength in Weightlifters and Muscle Fiber Hypertrophy. TheJournalofStrength&ConditioningResearch, 33, 2602-2607. https://doi.org/10.1519/JSC.0000000000003304
[33]
Homma, H., Kobatake, N., Sekimoto, Y., Saito, M., Mochizuki, Y., Okamoto, T., Nakazato, K., Nishiyama, T. and Kikuchi, N. (2020) Ciliary Neurotrophic Factor Receptor rs41274853 Polymorphism Is Associated with Weightlifting Performance in Japanese Weightlifters. TheJournalofStrength&ConditioningResearch, 34, 3037-3041. https://doi.org/10.1519/JSC.0000000000003750
[34]
Artells, R., Pruna, R., Dellal, A. and Maffulli, N. (2016) Elastin: A Possible Genetic Biomarker for More Severe Ligament Injuries in Elite Soccer. A Pilot Study. Muscles, LigamentsandTendonsJournal, 6, 188-192. https://doi.org/10.32098/mltj.02.2016.04
[35]
Pruna, R., Artells, R., Lundblad, M. and Maffulli, N. (2017) Genetic Biomarkers in Non-Contact Muscle Injuries in Elite Soccer Players. KneeSurgerySportsTraumatologyArthroscopy, 25, 3311-3318. https://doi.org/10.1007/s00167-016-4081-6
[36]
Lee, K.E., Kim, J.H., Chung, J.E., Lee, G.Y., Cho, Y.J., Chang, B.C. and Gwak, H.S. (2016) Association of Inflammatory Gene Polymorphisms with Mechanical Heart Valve Reoperation. SpringerPlus, 5, 937-943. https://doi.org/10.1186/s40064-016-2566-x
[37]
Todendi, P.F., Possuelo, L.G., Klinger, E.I., Reuter, C.P., Burgos, M.S., Moura, D.J., Fiegenbaum, M. and de Moura Valim, A.R. (2016) Low-Grade Inflammation Markers in Children and Adolescents: Influence of Anthropometric Characteristics and CPR and IL-6 Polymorphisms. Cytokine, 88, 177-183. https://doi.org/10.1016/j.cyto.2016.09.007
[38]
Collins, M., September, A.V. and Posthumus, M. (2015) Biological Variation in Musculoskeletal Injuries: Current Knowledge, Future Research and Practical Implications. BritishJournalofSportsMedicine, 49, 1497-1503. https://doi.org/10.1136/bjsports-2015-095180
[39]
Bahr, R. (2016) Why Screening Tests to Predict Injury Do Not Work-and Probably Never Will: A Critical Review. BritishJournalofSportsMedicine, 50, 776-780. https://doi.org/10.1136/bjsports-2016-096256
[40]
Jackson, A.S. and Pollock, M.L. (1978) Generalized Equations for Predicting Body Density of Men. BritishJournalofNutrition, 40, 497-504. https://doi.org/10.1079/BJN19780152
[41]
Pimenta, E.M., Coelho, D.B., Cruz, I.R., etal. (2012) The ACTN3 Genotype in Soccer Players in Response to Acute Eccentric Training. European Journal of Applied Physiology, 112, 1495-1503. https://doi.org/10.1007/s00421-011-2109-7
[42]
González, J.R., Armengol, L., Solé, X., Guinó, E., Mercader, J.M., Estivill, X. and Moreno, V. (2007) SNPassoc: An R Package to Perform Whole Genome Association Studies. Bioinformatics, 23, 644-645. https://doi.org/10.1093/bioinformatics/btm025
[43]
Cohen, J. (1988) Statistical Power Analysis for the Behavioral Sciences. Routledge Academic, London.
[44]
Hair, J.F., Hult, G.T.M., Ringle, C.M. and Sarstedt, M. (2017) Partial Least Squares Structural Equation Modelling. Verlag C. H. Beck, München. https://doi.org/10.15358/9783800653614
[45]
Cohen, J., Cohen, P., West, S.G. and Aiken, L.S. (2014) Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Psychology Press, New York. https://doi.org/10.4324/9781410606266
[46]
Vincent, B., Windelinckx, A., Nielens, H., Ramaekers, M., Van Leemputte, M., Hespel, P. and Thomis, M.A. (2010) Protective Role of Alpha-Actinin-3 in the Response to an Acute Eccentric Exercise Bout. JournalofAppliedPhysiology, 109, 564-573. https://doi.org/10.1152/japplphysiol.01007.2009
[47]
Ahmetov, I.I. and Fedotovska, O.N. (2015) Current Progress in Sports Genomics. AdvancesinClinicalChemistry, 70, 247-314. https://doi.org/10.1016/bs.acc.2015.03.003
[48]
North, K.N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S. and Beggs, A.H. (1999) A Common Nonsense Mutation Results in Alphaactinin-3 Deficiency in the General Population. NatureGenetics, 21, 353-354. https://doi.org/10.1038/7675
[49]
MacArthur, D.G. and North, K.N. (2004) A Gene for Speed? The Evolution and Function of Alpha-Actinin-3. Bioessays, 26, 786-795. https://doi.org/10.1002/bies.20061
[50]
Lee, F.X.Z., Houweling, P.J., North, K.N. and Quinlan, K.G.R. (2016) How Does α-Actinin-3 Deficiency Alter Muscle Function? Mechanistic Insights into ACTN3, the ‘Gene for Speed’. BiochimicaetBiophysicaActa(BBA)-MolecularCellResearch, 1863, 686-693. https://doi.org/10.1016/j.bbamcr.2016.01.013
[51]
Erskine, R.M., Williams, A.G., Jones, D.A., Stewart, C.E. and Degens, H. (2014) The Individual and Combined Influence of ACE and ACTN3 Genotypes on Muscle Phenotypes before and after Strength Training. ScandinavianJournalofMedicine&ScienceinSports, 24, 642-648. https://doi.org/10.1111/sms.12055
[52]
MacArthur, D.G., Seto, J.T., Raftery, J.M., Quinlan, K.G., Huttley, G.A., Hook, J.W., Lemckert, F.A., Kee, A.J., Edwards, M.R., Berman, Y. and Hardeman, E.C. (2007) Loss of ACTN3 Gene Function Alters Mouse Muscle Metabolism and Shows Evidence of Positive Selection in Humans. NatureGenetics, 39, 1261-1265. https://doi.org/10.1038/ng2122
[53]
Chen, X. and Li, Y. (2009) Role of Matrix Metalloproteinases in Skeletal Muscle: Migration, Differentiation, Regeneration and Fibrosis. CellAdhesion&Migration, 3, 337-341. https://doi.org/10.4161/cam.3.4.9338
[54]
Baumert, P., Hall, E.C. and Erskine, R.M. (2019) The Genetic Association with Exercise-Induced Muscle Damage and Muscle Injury Risk. In: Barh, D. and Ahmetov, I., Eds., Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions, Academic Press, Cambridge, 375-407. https://doi.org/10.1016/B978-0-12-816193-7.00017-8
[55]
Ahmetov, I.I., Hall, E.C., Semenova, E.A., Pranckevičienė, E. and Ginevičienė, V. (2022) Advances in Sports Genomics. AdvancesinClinicalChemistry, 107, 215-263. https://doi.org/10.1016/bs.acc.2021.07.004
[56]
Pickering, C., Suraci, B., Semenova, E.A., Boulygina, E.A., Kostryukova, E.S., Kulemin, N.A., Borisov, O.V., Khabibova, S.A., Larin, A.K., Pavlenko, A.V. and Lyubaeva, E.V. (2019) A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. TheJournalofStrength&ConditioningResearch, 33, 2344-2351. https://doi.org/10.1519/JSC.0000000000003259
[57]
Ahmetov, I.I., Donnikov, A.E. and Trofimov, D.Y. (2014) ACTN3 Genotype Is Associated with Testosterone Levels of Athletes. BiologyofSports, 31, 105-108. https://doi.org/10.5604/20831862.1096046
[58]
Kikuchi, N., Tsuchiya, Y., Nakazato, K., Ishii, N. and Ochi, E. (2018) Effects of the ACTN3 R577X Genotype on the Muscular Strength and Range of Motion before and after Eccentric Contractions of the Elbow Flexors. InternationalJournalofSportsMedicine, 39, 148-153. https://doi.org/10.1055/s-0043-120762
[59]
Luo, H.R., Hattori, H., Hossain, M.A., Hester, L., Huang, Y., Lee-Kwon, W., Donowitz, M., Nagata, E. and Snyder, S.H. (2003) Akt as a Mediator of Cell Death. ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 100, 11712-11717. https://doi.org/10.1073/pnas.1634990100
[60]
Seaborne, R.A., Hughes, D.C., Turner, D.C., Owens, D.J., Baehr, L.M., Gorski, P., Semenova, E.A., Borisov, O.V., Larin, A.K., Popov, D.V. and Generozov, E.V. (2019) UBR5 Is a Novel E3 Ubiquitin Ligase Involved in Skeletal Muscle Hypertrophy and Recovery from Atrophy. TheJournalofPhysiology, 597, 3727-3749. https://doi.org/10.1113/JP278073
[61]
Bell, R.D., Shultz, S.J., Wideman, L. and Henrich, V.C. (2012) Collagen Gene Variants Previously Associated with Anterior Cruciate Ligament Injury Risk Are also Associated with Joint Laxity. SportsHealth, 4, 312-318. https://doi.org/10.1177/1941738112446684
[62]
Laguette, M.J., Abrahams, Y., Prince, S. and Collins, M. (2011) Sequence Variants within the 3’-UTR of the COL5A1 Gene Alters mRNA Stability: Implications for Musculoskeletal Soft Tissue Injuries. MatrixBiology, 30, 338-345. https://doi.org/10.1016/j.matbio.2011.05.001
[63]
Collins, M. and Raleigh, S.M. (2009) Genetic Risk Factors for Musculoskeletal Soft Tissue Injuries. MedicineSportandScience, 54, 136-149. https://doi.org/10.1159/000235701
[64]
Guo, R., Ji, Z., Gao, S., Aizezi, A., Fan, Y., Wang, Z. and Ning, K. (2022) Association of COL5A1 Gene Polymorphisms and Musculoskeletal Soft Tissue Injuries: A Meta-Analysis Based on 21 Observational Studies. JournalofOrthopedicSurgeryandResearch, 17, Article No. 129. https://doi.org/10.1186/s13018-022-03020-9
[65]
Horozoglu, C., Aslan, H.E., Karaagac, A., Kucukhuseyin, O., Bilgic, T., Himmetoglu, S., Gheybi, A., Yaylim, I. and Zeybek, U. (2022) Effects of Genetic Variations of Mlck2, Ampd1, and Col5a1 on Muscle Endurance. RevistaBrasileiradeMedicinadoEsporte, 28, 261-266. https://doi.org/10.1590/1517-8692202228022021_0180
[66]
Massidda, M., Bachis, V., Corrias, L., Piras, F., Scorcu, M. and Calo, C.M. (2015) Influence of the COL5A1 rs12722 on Musculoskeletal Injuries in Professional Soccer Players. JournalofSportsMedicineandPhysicalFitness, 55, 1348-1353.
[67]
Hall, E.C., Semenova, E., Bondareva, E.A., Borisov, O., Andryushchenko, O.N., Andryushchenko, L., Zmijewski, P., Generozov, E. and Ahmetov, I. (2021) Association of Muscle Fiber Composition with Health and Exercise-Related Traits in Athletes and Untrained Subjects. BiologyofSport, 38, 659-666. https://doi.org/10.5114/biolsport.2021.102923
[68]
Heffernan, S.M., Kilduff, L.P., Erskine, R.M., Day, S.H., Stebbings, G.K., Cook, C.J., Raleigh, S.M., Bennett, M.A., Wang, G., Collins, M. and Pitsiladis, Y.P. (2017) COL5A1 Gene Variants Previously Associated with Reduced Soft Tissue Injury Risk Are Associated with Elite Athlete Status in Rugby. BMCGenomics, 18, Article No. 820. https://doi.org/10.1186/s12864-017-4187-3
[69]
Khoschnau, S., Melhus, H., Jacobson, A., Rahme, H., Bengtsson, H., Ribom, E., Grundberg, E., Mallmin, H. and Michaëlsson, K. (2008) Type I Collagen Alpha1 Sp1 Polymorphism and the Risk of Cruciate Ligament Ruptures or Shoulder Dislocations. TheAmericanJournalofSportsMedicine, 36, 2432-2436. https://doi.org/10.1177/0363546508320805
[70]
Posthumus, M., September, A.V., O’Cuinneagain, D., van der Merwe, W., Schwellnus, M.P. and Collins, M. (2009) The COL5A1 Gene Is Associated with Increased Risk of Anterior Cruciate Ligament Ruptures in Female Participants. TheAmericanJournalofSportsMedicine, 37, 2234-2240. https://doi.org/10.1177/0363546509338266
[71]
Collins, M., Posthumus, M. and Schwellnus, M.P. (2010) The COL1A1 Gene and Acute Soft Tissue Ruptures. BritishJournalofSportsMedicine, 44, 1063-1064. https://doi.org/10.1136/bjsm.2008.056184
[72]
Wang, C., Li, H., Chen, K., Wu, B. and Liu, H. (2017) Association of Polymorphisms rs1800012 in COL1A1 with Sports-Related Tendon and Ligament Injuries: A Meta-Analysis. Oncotarget, 8, 27627-27634. https://doi.org/10.18632/oncotarget.15271
[73]
Tilkeridis, C., Bei, T., Garantziotis, S. and Stratakis, C.A. (2005) Association of a COL1A1 Polymorphism with Lumbar Disc Disease in Young Military Recruits. JournalofMedicalGenetics, 42, e44. https://doi.org/10.1136/jmg.2005.033225
[74]
Stępień-Słodkowska, M., Ficek, K., Eider, J., Leońska-Duniec, A., Maciejewska-Karłowska, A., Sawczuk, M., Zarębska, A., Jastrzębski, Z., Grenda, A., Kotarska, K. and Cięszczyk, P. (2013) The +1245g/t Polymorphisms in the Collagen Type I Alpha 1 (col1a1) Gene in Polish Skiers with Anterior Cruciate Ligament Injury. BiologyofSport, 30, 57-60.
[75]
Erduran, M., Altinisik, J., Meric, G., Ates, O., Ulusal, A.E. and Akseki, D. (2014) Is Sp1 Binding Site Polymorphism within COL1A1 Gene Associated with Tennis Elbow? Gene, 537, 308-311. https://doi.org/10.1016/j.gene.2013.12.014
[76]
Gal-Levi, R., Leshem, Y., Aoki, S., Nakamura, T. and Halevy, O. (1998) Hepatocyte Growth Factor Plays a Dual Role in Regulating Skeletal Muscle Satellite Cell Proliferation and Differentiation. BiochimicaetBiophysicaActa, 1402, 39-51. https://doi.org/10.1016/S0167-4889(97)00124-9
[77]
Tatsumi, R. and Allen, R.E. (2004) Active Hepatocyte Growth Factor Is Present in Skeletal Muscle Extracellular Matrix. Muscle&Nerve, 30, 654-658. https://doi.org/10.1002/mus.20114
[78]
Webster, M.T. and Fan, C.M. (2013) c-MET Regulates Myoblast Motility and Myocyte Fusion during Adult Skeletal Muscle Regeneration. PLOSONE, 8, e81757. https://doi.org/10.1371/journal.pone.0081757
[79]
Pruna, R., Artells, R., Ribas, J., Montoro, B., Cos, F., Muñoz, C., Rodas, G. and Maffulli, N. (2013) Single Nucleotide Polymorphisms Associated with Non-Contact Soft Tissue Injuries in Elite Professional Soccer Players: Influence on Degree of Injury and Recovery Time. BMCMusculoskeletalDisorders, 14, Article No. 221. https://doi.org/10.1186/1471-2474-14-221
[80]
Mao, K., Quipildor, G.F., Tabrizian, T., Novaj, A., Guan, F., Walters, R.O., Delahaye, F., Hubbard, G.B., Ikeno, Y., Ejima, K., and Li, P. (2018) Late-Life Targeting of the IGF-1 Receptor Improves Healthspan and Lifespan in Female Mice. NatureCommunication, 9, Article No. 2394. https://doi.org/10.1038/s41467-018-04805-5
[81]
Ben-Zaken, S., Eliakim, A., Nemet, D. and Meckel, Y. (2019) Genetic Variability among Power Athletes: The Stronger vs. the Faster. JournalofStrengthandConditioningResearch, 33, 1505-1511. https://doi.org/10.1519/JSC.0000000000001356
[82]
Ocarino, N.M. and Serakides, R. (2006) Efeito da atividade física no osso normal e na prevenção e tratamento da osteoporose. RevistaBrasileiradeMedicinadoEsporte, 12, 164-168. https://doi.org/10.1590/S1517-86922006000300011
[83]
Nomura, S. and Takano-Yamamoto, T. (2000) Molecular Events Caused by Mechanical Stress in Bone. MatrixBiology, 19, 91-96. https://doi.org/10.1016/S0945-053X(00)00050-0
[84]
Brahm, H., Piehl-Aulin, K., Saltin, B. and Ljunghall, S. (1997) Net Fluxes Over Working Thigh of Hormones, Growth Factors and Biomarkers of Bone Metabolism during Short Lasting Dynamic Exercise. CalcifiedTissueInternational, 60, 175-180. https://doi.org/10.1007/s002239900210
[85]
Eider, J., Maciejewska-Karlowska, A., Sawczuk, M., Ficek, K., Cieszczyk, P., Leonska-Duniec, A. and Sawczyn, S. (2013) The VEGFR2 Gene His472Gln Polymorphism in Polish Endurance Athletes: Original Research Article. InternationalSportMedJournal, 14, 29-35.
[86]
Eynon, N., Meckel, Y., Alves, A.J., Nemet, D. and Eliakim, A. (2011) Is There an Interaction between BDKRB2-9/+9 and GNB3 C825T Polymorphisms and Elite Athletic Performance? ScandinavianJournalofMedicine&ScienceinSports, 21, 242-246. https://doi.org/10.1111/j.1600-0838.2010.01261.x
[87]
Yang, J., Zhang, L., Yu, C., Yang, X.F. and Wang, H. (2014) Monocyte and Macrophage Differentiation: Circulation Inflammatory Monocyte as Biomarker for Inflammatory Diseases. BiomarkerResearch, 2, Article No. 1. https://doi.org/10.1186/2050-7771-2-1
[88]
Pence, B.D. and Yarbro, J.R. (2018) Aging Impairs Mitochondrial Respiratory Capacity in Classical Monocytes. ExperimentalGerontology, 108, 112-117. https://doi.org/10.1016/j.exger.2018.04.008
[89]
Yamin, C., Duarte, J.A.R., Oliveira, J.M.F., Amir, O., Sagiv, M., Eynon, N., Sagiv, M. and Amir, R.E. (2008) IL6 (-174) and TNFA (-308) Promoter Polymorphisms Are Associated with Systemic Creatine Kinase Response to Eccentric Exercise. EuropeanJournalofAppliedPhysiology, 104, 579-586. https://doi.org/10.1007/s00421-008-0728-4
[90]
Yamin, C. (2009) Reply to “IL6 Genotype and Creatine Kinase Response to Exercise.” EuropeanJournalofAppliedPhysiology, 107, 375. https://doi.org/10.1007/s00421-009-1137-z
[91]
Deuster, P.A., Contreras-Sesvold, C.L., O’Connor, F.G., Campbell, W.W., Kenney, K., Capacchione, J.F., Landau, M.E., Muldoon, S.M., Rushing, E.J. and Heled, Y. (2013) Genetic Polymorphisms Associated with Exertional Rhabdomyolysis. EuropeanJournalofAppliedPhysiology, 113, 1997-2004. https://doi.org/10.1007/s00421-013-2622-y
[92]
Goetsch, K.P., Myburgh, K.H. and Niesler, C.U. (2013) In vitro Myoblast Motility Models: Investigating Migration Dynamics for the Study of Skeletal Muscle Repair. JournalofMuscleResearchandCellMotility, 34, 333-347. https://doi.org/10.1007/s10974-013-9364-7
[93]
Chen, Y., Nixon, N.B., Dawes, P.T. and Mattey, D.L. (2012) Influence of Variations across the MMP-1 and-3 Genes on the Serum Levels of MMP-1 and-3 and Disease Activity in Rheumatoid Arthritis. GenesandImmunity, 13, 29-37. https://doi.org/10.1038/gene.2011.46
[94]
Davis, M.E., Gumucio, J.P., Sugg, K.B., Bedi, A. and Mendias, C.L. (2013) MMP Inhibition as a Potential Method to Augment the Healing of Skeletal Muscle and Tendon Extracellular Matrix. JournalofAppliedPhysiology, 115, 884-891. https://doi.org/10.1152/japplphysiol.00137.2013
[95]
Feit, H., Kawai, M. and Mostafapour, A.S. (1989) The Role of Collagen Crosslinking in the Increased Stiffness of Avian Dystrophic Muscle. Muscle&Nerve, 12, 486-492. https://doi.org/10.1002/mus.880120609
[96]
Lapier, T.K., Burton, H.W., Almon, R. and Cerny, F. (1995) Alterations in Intramuscular Connective Tissue after Limb Casting Affect Contraction-Induced Muscle Injury. JournalofAppliedPhysiology, 78, 1065-1069. https://doi.org/10.1152/jappl.1995.78.3.1065
[97]
Choi, Y.C. and Dalakas, M.C. (2000) Expression of Matrix Metalloproteinases in the Muscle of Patients with Inflammatory Myopathies. Neurology, 54, 65-71. https://doi.org/10.1212/WNL.54.1.65
[98]
Goetsch, S.C., Hawke, T.J., Gallardo, T.D., Richardson, J.A. and Garry, D.J. (2003) Transcriptional Profiling and Regulation of the Extracellular Matrix during Muscle Regeneration. PhysiologicalGenomics, 14, 261-271. https://doi.org/10.1152/physiolgenomics.00056.2003
[99]
Ye, S. (2006) Influence of Matrix Metalloproteinase Genotype on Cardiovascular Disease Susceptibility and Outcome. CardiovascularResearch, 69, 636-645. https://doi.org/10.1016/j.cardiores.2005.07.015
[100]
Foster, B.P., Morse, C.I., Onambele, G.L., Ahmetov, I.I. and Williams, A.G. (2012) Genetic Variation, Protein Composition and Potential Influences on Tendon Properties in Humans. TheOpenSportsMedicineJournal, 6, 8-21. https://doi.org/10.2174/1874387001206010008
[101]
Zhang, Q.W. (2018) Association of the Matrix Metalloproteinase-3 Polymorphisms rs679620 and rs3025058 with Ischemic Stroke Risk: A Meta-Analysis. NeuropsychiatricDiseaseandTreatment, 14, 419-427. https://doi.org/10.2147/NDT.S152256
[102]
Medley, T.L., Kingwell, B.A., Gatzka, C.D., Pillay, P. and Cole, T.J. (2003) Matrix Metalloproteinase-3 Genotype Contributes to Age-Related Aortic Stiffening through Modulation of Gene and Protein Expression. CirculationResearch, 92, 1254-1261. https://doi.org/10.1161/01.RES.0000076891.24317.CA
[103]
Cheng, L., Zhang, D., Zhou, L., Zhao, J. and Chen, B. (2015) Association between SLC30A8 rs13266634 Polymorphism and Type 2 Diabetes Risk: A Meta-Analysis. MedicalScienceMonitor, 21, 2178-2189. https://doi.org/10.12659/MSM.894052
[104]
Kumar, V., Abbas, A.K. and Fausto, N. (2005) Tissue Renewal and Repair: Regeneration, Healing, and Fibrosis. In: Kumar, V., Abbas, A.K. and Aster, J.C., Eds., Robbins& Cotran Pathologic Basis of Disease, Elsevier, Amsterdam, 87-118.
[105]
Vilela, P.G.F. (2009) Avaliação da liberação de metaloproteinases da matriz (mmp-3 e mmp-8) por macrófagos ativados por diferentes concentrações de endotoxinas (lps) em variados períodos de tempo, 2009. Dissertação. Universidade Estadual Paulista, São Paulo. https://www.repositorio.unesp.br/
[106]
Raleigh, S.M., Van der Merwe, L., Ribbans, W.J., Smith, R.K., Schwellnus, M.P. and Collins, M. (2009) Variants within the MMP3 Gene Are Associated with Achilles Tendinopathy: Possible Interaction with the COL5A1 Gene. BritishJournalofSportsMedicine, 43, 514-520. https://doi.org/10.1136/bjsm.2008.053892
[107]
El Khoury, L., Ribbans, W.J. and Raleigh, S.M. (2016) MMP3 and TIMP2 Gene Variants as Predisposing Factors for Achilles Tendon Pathologies: Attempted Replication Study in a British Case-Control Cohort. MetaGene, 9, 52-55. https://doi.org/10.1016/j.mgene.2016.03.007
[108]
Gao, H., Zhao, L. and Wang, H. (2017) Metal Transporter Slc39a10 Regulates Susceptibility to Inflammatory Stimuli by Controlling Macrophage Survival. ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 114, 12940-12945. https://doi.org/10.1073/pnas.1708018114
[109]
Staiger, H., Machicao, F., Stefan, N., Tschritter, O., Thamer, C., Kantartzis, K., Schäfer, S.A., Kirchhoff, K., Fritsche, A. and Häring, H.U. (2007) Polymorphisms within Novel Risk Loci for Type 2 Diabetes Determine Beta-Cell Function. PLOSONE, 2, e832. https://doi.org/10.1371/journal.pone.0000832
[110]
Lemaire, K., Ravier, M.A., Schraenen, A., Creemers, J.W., Van de Plas, R., Granvik, M., Van Lommel, L., Waelkens, E., Chimienti, F., Rutter, G.A. and Gilon, P. (2009) Insulin Crystallization Depends on Zinc Transporter ZnT8 Expression but Is not Required for Normal Glucose Homeostasis in Mice. ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 106, 14872-14877. https://doi.org/10.1073/pnas.0906587106
[111]
Kirchhoff, K., Machicao, F., Haupt, A., Schäfer, S.A., Tschritter, O., Staiger, H., Stefan, N., Häring, H.U. and Fritsche, A. (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 Genes Are Associated with Impaired Proinsulin Conversion. Diabetologia, 51, 597-601. https://doi.org/10.1007/s00125-008-0926-y
[112]
Sprouse, C., Gordish-Dressman, H., Orkunoglu-Suer, E.F., Lipof, J.S., Moeckel-Cole, S., Patel, R.R., Adham, K., Larkin, J.S., Hubal, M.J., Kearns, A.K. and Clarkson, P.M. (2014) SLC30A8 Nonsynonymous Variant Is Associated with Recovery Following Exercise and Skeletal Muscle Size and Strength. Diabetes, 63, 363-368. https://doi.org/10.2337/db13-1150
[113]
Costill, D.L., Pascoe, D.D., Fink, W.J., Robergs, R.A., Barr, S.I. and Pearson, D. (1990) Impaired Muscle Glycogen Resynthesis after Eccentric Exercise. JournalofAppliedPhysiology, 69, 46-50. https://doi.org/10.1152/jappl.1990.69.1.46
[114]
Nielsen, J., Farup, J., Rahbek, S.K., de Paoli, F.V. and Vissing, K. (2015) Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions. PLOSONE, 10, e0127808. https://doi.org/10.1371/journal.pone.0127808
[115]
Kirwan, J.P., Bourey, R.E., Kohrt, W.M., Staten, M.A. and Holloszy, J.O. (1991) Effects of Treadmill Exercise to Exhaustion on the Insulin Response to Hyperglycemia in Untrained Men. JournalofAppliedPhysiology, 70, 246-250. https://doi.org/10.1152/jappl.1991.70.1.246
[116]
Plomgaard, P., Bouzakri, K., Krogh-Madsen, R., Mittendorfer, B., Zierath, J.R. and Pedersen, B.K. (2005) Tumor Necrosis Factor-Alpha Induces Skeletal Muscle Insulin Resistance in Healthy Human Subjects via Inhibition of Akt Substrate 160 Phosphorylation. Diabetes, 54, 2939-2945. https://doi.org/10.2337/diabetes.54.10.2939
[117]
Asp, S., Daugaard, J.R. and Richter, E.A. (1995) Eccentric Exercise Decreases Glucose Transporter GLUT4 Protein in Human Skeletal Muscle. TheJournalofPhysiology, 482, 705-712. https://doi.org/10.1113/jphysiol.1995.sp020553
[118]
Sacheck, J.M., Hyatt, J.P.K., Raffaello, A., Thomas Jagoe, R., Roy, R.R., Reggie Edgerton, V., Lecker, S.H. and Goldberg, A.L. (2007) Rapid Disuse and Denervation Atrophy Involve Transcriptional Changes Similar to Those of Muscle Wasting during Systemic Diseases. TheFASEBJournal, 21, 140-155. https://doi.org/10.1096/fj.06-6604com
[119]
Wu, X., Hakimi, M., Wortmann, M., Zhang, J., Böckler, D. and Dihlmann, S. (2015) Gene Expression of Inflammasome Components in Peripheral Blood Mononuclear Cells (PBMC) of Vascular Patients Increases with Age. Immunity&Ageing, 12, Article No. 15. https://doi.org/10.1186/s12979-015-0043-y
[120]
Yao, Z.Y., Zhang, Y. and Wu, H.B. (2019) Regulation of C-Reactive Protein Conformation in Inflammation. InflammationResearch, 68, 815-823. https://doi.org/10.1007/s00011-019-01269-1
[121]
Lee, H.J., Göring, W., Ochs, M., Mühlfeld, C., Steding, G., Paprotta, I., Engel, W. and Adham, I.M. (2004) Sox15 Is Required for Skeletal Muscle Regeneration. MolecularandCellularBiology, 24, 8428-8436. https://doi.org/10.1128/MCB.24.19.8428-8436.2004
[122]
Monnerat, G., Maior, A.S., Tannure, M., Back, L.K. and Santos, C.G. (2019) Single-Nucleotide-Polymorphism-Panel Population-Genetics Approach Based on the 1000 Genomes Database and Elite Soccer Players. InternationalJournalofSportsPhysiologyandPerformance, 14, 711-717. https://doi.org/10.1123/ijspp.2018-0715