全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Stacking融合模型的汽车保险诈骗分析
Analysis of Car Insurance Fraud Based on Stacking Fusion Model

DOI: 10.12677/sa.2024.134134, PP. 1329-1338

Keywords: 汽车保险欺诈,Stacking模型,机器学习,模拟退火算法,特征重要性
Car Insurance Fraud
, Stacking Model, Machine Learning, Simulated Annealing Algorithm, Feature Importance

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着中国新能源汽车的兴起,关于汽车保险诈骗的问题日益突出。为了对保险诈骗行为进行有效识别,本文基于机器学习的相关理论,利用模拟退火算法调参的Stacking融合模型对保险欺诈进行预测。首先,利用随机森林和XGBoost算法筛选得到两个不同特征的训练数据集,然后通过差异化的数据来优化Stacking模型的预测能力,并利用交叉验证法得到最优模型,其准确率为87.43%。实证分析表明,相较于未使用差异化数据的Stacking模型,本文所建的融合模型对汽车保险欺诈行为有更高的识别能力。
With the rise of new energy vehicles in China, the issue of car insurance fraud has become increasingly prominent. In order to effectively identify fraudulent insurance activities, this study employs the Stacking ensemble model, optimized using simulated annealing algorithm tuning based on machine learning theories, to predict insurance fraud. Initially, utilizing the Random Forest and XGBoost algorithms, two distinct feature sets are selected to construct training datasets. Subsequently, by employing differentiated data, the predictive capability of the Stacking model is enhanced. Through cross-validation, the optimal model is obtained and its accuracy is 87.43%. Empirical analysis shows that compared to the Stacking model without differentiated data, the ensemble model developed in this study exhibits superior capability in identifying fraudulent behaviors in car insurance.

References

[1]  喻炜, 冯根福, 张文珺. 机动车辆保险欺诈检测系统及团伙识别研究[J]. 保险研究, 2017(2): 63-73.
[2]  朱建平, 章贵军, 刘晓葳. 大数据时代下数据分析理念的辨析[J]. 统计研究, 2014, 31(2): 10-19.
[3]  陈思迎. 大数据背景下机动车辆保险欺诈风险及其防范研究[D]: [硕士学位论文]. 成都: 西南财经大学, 2019.
[4]  张静涵. 基于交互式动态评价方法的保险欺诈识别[D]: [硕士学位论文]. 长春: 吉林大学, 2023.
[5]  于思雨. 基于随机森林的医保欺诈检测混合算法研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2023.
[6]  Aslam, F., Hunjra, A.I., Ftiti, Z., Louhichi, W. and Shams, T. (2022) Insurance Fraud Detection: Evidence from Artificial Intelligence and Machine Learning. Research in International Business and Finance, 62, Article ID: 101744.
https://doi.org/10.1016/j.ribaf.2022.101744
[7]  Gong, J., Zhang, H. and Du, W. (2020) Research on Integrated Learning Fraud Detection Method Based on Combination Classifier Fusion (THBagging): A Case Study on the Foundational Medical Insurance Dataset. Electronics, 9, Article 894.
https://doi.org/10.3390/electronics9060894
[8]  Xia, H., Zhou, Y. and Zhang, Z. (2022) Auto Insurance Fraud Identification Based on a CNN-LSTM Fusion Deep Learning Model. International Journal of Ad Hoc and Ubiquitous Computing, 39, 37-45.
https://doi.org/10.1504/ijahuc.2022.120943
[9]  Yan, C., Li, M., Liu, W. and Qi, M. (2020) Improved Adaptive Genetic Algorithm for the Vehicle Insurance Fraud Identification Model Based on a BP Neural Network. Theoretical Computer Science, 817, 12-23.
https://doi.org/10.1016/j.tcs.2019.06.025
[10]  Chen, T. and Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 785-794.
https://doi.org/10.1145/2939672.2939785
[11]  Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/a:1010933404324
[12]  Wolpert, D.H. (1992) Stacked Generalization. Neural Networks, 5, 241-259.
https://doi.org/10.1016/s0893-6080(05)80023-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133