Renewable energies are of major interest due to their inexhaustible and clean nature, with minimal impact on the environment. Numerous technological pathways exist in this field, each distinguished by the materials used and their implementation principles. However, the cost-efficiency ratio remains a significant challenge for researchers. Currently, organic materials are gaining popularity due to their relatively low cost. However, their performance, particularly in terms of conversion efficiency, still requires improvements. This study focuses on optimizing the organic photovoltaic cell ITO/MoO3/CARAPA/PCBM/Alq3/Al using SCAPS. Several parameters were considered, such as layer thickness, recombination center density, and doping, to improve the cell’s performance. The optimal parameters obtained include an efficiency of 3%, a fill factor of 81.67%, an open-circuit voltage of 1610 mV, and a short-circuit current of 2.28 mA/cm2. The study also revealed that doping the phenyl-C61-butyric acid methyl ester (PCBM) layer has a significant impact on efficiency and short-circuit current, improving these parameters up to a certain point before causing degradation due to increased recombination. Furthermore, high doping of the tri (8-hydroxyquinoline) aluminum (Alq3) layer improves performance up to a critical threshold, after which degradation is also observed. In contrast, doping the molybdenum trioxide (MoO3) layer does not have a notable impact on cell performance. Regarding the thickness of the active Carapaprocera (CARAPA) and PCBM layers, non-optimal values lead to a decrease in performance. Similarly, an optimal thickness of the Alq3 layer significantly improves efficiency. These results highlight the importance of parameter optimization to maximize the efficiency of organic solar cells.
References
[1]
Soro, D., Sylla, A., Ignace, N.A., Toure, A., Bouich, A., Toure, S., et al. (2022) Simulation of a CIGS Solar Cell with CIGSe2/MoSe2/Mo Rear Contact Using AFORS-HET Digital Simulation Software. Modeling and Numerical Simulation of Material Science, 12, 13-23. https://doi.org/10.4236/mnsms.2022.122002
[2]
Bailly, L. (2010) Cellules photovoltaïques organiques souples à grande surface. Master’s Thesis, Université Bordeaux.
[3]
Soro, D., Toure, S., Sylla, A., Bouich, A., Mari-Guaita, J., Toure, S., et al. (2023) Numerical Simulation of Tandem Using ZnS as a Buffer Layer Cu I(1-x) CaxSe2/CuGaSe2. Modeling and Numerical Simulation of Material Science, 13, 1-10. https://doi.org/10.4236/mnsms.2023.131001
[4]
Hacène B. (2014) Modélisation et simulation des cellules solaires à base de P3HT: PCBM (effet de la mobilité et la vitesse de recombinaison en surface). Ph.D. Thesis, Universite Abou BakrBelkaïd.
[5]
Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T., Dante, M., et al. (2007) Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science, 317, 222-225. https://doi.org/10.1126/science.1141711
[6]
Niemegeers, A., Gillis, S. and Burgelman, M. (1998) A User Program for Realistic Simulation of Polycrystalline Heterojunction Solar Cells: SCAPS-1D. Proceedings of the 2nd World Conferenceon Photovoltaic Energy Conversion, JRC, European Commission, Vienna, 6-10 July 1998, 672-675.
[7]
Zhao, J., Wang, A., Green, M.A. and Ferrazza, F. (1998) 19.8% Efficient “Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells. Applied Physics Letters, 73, 1991-1993. https://doi.org/10.1063/1.122345
Abderrahmane, L.T. (2015) Elaboration et caractéristique des couches minces organique tampons et active pour application aux dispositifs. Master’s Thesis, Université d’Oran1 Amed ben bella.
[10]
Fall, S. (2013) Etude du transport de charge dans les polymère semi-conducteur a faible bande interdite et de son impact sur les performances photovoltaique. Master’s Thesis, Université de Strasgbourg.
[11]
Datte, J.K., Yapi, S.A., Douhoré, G.Y.T. and Kouassi, L.K. (2020) Dye Sensitized Solar Cell Using Extracts from Carapaprocera Bark as Natural Sensitizer. Journal of Materials and Environmental Science, 11, 1552-1559.
[12]
Hamad, S.K. (2021) Modélisation et simulation des cellules solaires à base de colorant à l’aide de Matlab cas de la carapaprocera et de la rauvolfiavomitoria. Ph.D. Thesis, Université de Man.
[13]
Makha, M. (2014) Utilisation de diverses électrodes conductrices et transparentes comme anode des cellules photovoltaïques organiques, optimisation de l’interface à l’aide des couches tampons. Master’s Thesis, Université Nantes Angers Le Mans.
[14]
Joël Hervé, N.T., Ouchaib, H., Jean-Marie, N., Abderraouf, R. and Philippe, T. (2015) Performances des cellules solaires à base de Cu2ZnSnS4 (CZTS): Une analyse par simulations numériques via le simulateur SCAPS. Afrique Science, 11, 16-23.
[15]
Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S.J., Bojarczuk, N.A., et al. (2010) Thermally Evaporated Cu2ZnSnS4 Solar Cells. AppliedPhysicsLetters, 97, Article ID: 143508. https://doi.org/10.1063/1.3499284
[16]
Chan, C.P., Lam, H. and Surya, C. (2010) Preparation of Cu2znsns4 Films by Electrodeposition Using Ionic Liquids. SolarEnergyMaterialsandSolarCells, 94, 207-211. https://doi.org/10.1016/j.solmat.2009.09.003
[17]
Mouchou, R.T., Jen, T.C., Laseinde, O.T. and Ukoba, K.O. (2021) Numerical Simulation and Optimization of p-NiO/n-TiO2 Solar Cell System Using SCAPS. MaterialsToday: Proceedings, 38, 835-841. https://doi.org/10.1016/j.matpr.2020.04.880
[18]
Park, J.W., Lim, J.T., Oh, J.S., Kim, S.H., Viet, P.P., Jhon, M.S., et al. (2013) Electron-injecting Properties of Rb2CO3-Doped Alq3 Thin Films in Organic Light-Emitting Diodes. JournalofVacuumScience&TechnologyA: Vacuum, Surfaces, andFilms, 31, Article ID: 031101. https://doi.org/10.1116/1.4798302