This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accurately achieve the trajectory tracking control for exoskeletons. In this paper, we present a robust control of trajectory tracking control based on servo constraints. Firstly, we consider the uncertainties (e.g., modelling errors, initial condition deviations, structural vibrations, and other unknown external disturbances) in the exoskeleton system, which are time-varying and bounded. Secondly, we establish the dynamic model and formulate a close-loop connection between the dynamic model and the real world. Then, the trajectory tracking issue is regarded as a servo constraint problem, and an adaptive robust control with leakage-type adaptive law is proposed with the guaranteed Lyapunov stability. Finally, we conduct numerical simulations to verify the performance of the proposed controller.
References
[1]
Zoss, A.B., Kazerooni, H. and Chu, A. (2006) Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 11, 128-138. https://doi.org/10.1109/tmech.2006.871087
[2]
Viteckova, S., Kutilek, P., de Boisboissel, G., Krupicka, R., Galajdova, A., Kauler, J., et al. (2018) Empowering Lower Limbs Exoskeletons: State-of-the-Art. Robotica, 36, 1743-1756. https://doi.org/10.1017/s0263574718000693
[3]
Cieza, A., Causey, K., Kamenov, K., Hanson, S.W., Chatterji, S. and Vos, T. (2020) Global Estimates of the Need for Rehabilitation Based on the Global Burden of Disease Study 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 396, 2006-2017. https://doi.org/10.1016/s0140-6736(20)32340-0
[4]
Enoka, R.M. and Duchateau, J. (2008) Muscle Fatigue: What, Why and How It Influences Muscle Function. The Journal of Physiology, 586, 11-23. https://doi.org/10.1113/jphysiol.2007.139477
[5]
Wang, X., Dong, X.S., Choi, S.D. and Dement, J. (2016) Work-Related Musculoskeletal Disorders among Construction Workers in the United States from 1992 to 2014. Occupational and Environmental Medicine, 74, 374-380. https://doi.org/10.1136/oemed-2016-103943
[6]
Sluiter, J.K., Rest, K.M. and Frings-Dresen, M.H.W. (2001) Criteria Document for Evaluating the Work-Relatedness of Upper-Extremity Musculoskeletal Disorders. Scandinavian Journal of Work, Environment & Health, 27, 1-102.
[7]
Ding, S., Anaya-Reyes, F., Narayan, A., Ofori, S., Bhattacharya, S. and Yu, H. (2024) A Lightweight Shoulder Exoskeleton with a Series Elastic Actuator for Assisting Overhead Work. IEEE/ASME Transactions on Mechatronics, 29, 1030-1040. https://doi.org/10.1109/tmech.2023.3330755
[8]
Go, A.S., Mozaffarian, D., Roger, V.L., et al. (2013) Heart Disease and Stroke Statis-tics—2013 Update: A Report from the American Heart Association. Circulation, 127, e6-e245.
[9]
Woldag, H. and Hummelsheim, H. (2002) Evidence-based Physiotherapeutic Concepts for Improving Arm and Hand Function in Stroke Patients. Journal of Neurology, 249, 518-528. https://doi.org/10.1007/s004150200058
[10]
Chen, G., Chan, C.K., Guo, Z. and Yu, H. (2013) A Review of Lower Extremity Assistive Robotic Exoskeletons in Rehabilitation Therapy. Critical Reviews in Biomedical Engineering, 41, 343-363. https://doi.org/10.1615/critrevbiomedeng.2014010453
[11]
Chen, B., Ma, H., Qin, L., Gao, F., Chan, K., Law, S., et al. (2016) Recent Developments and Challenges of Lower Extremity Exoskeletons. Journal of Orthopaedic Translation, 5, 26-37. https://doi.org/10.1016/j.jot.2015.09.007
[12]
Bogue, R. (2015) Robotic Exoskeletons: A Review of Recent Progress. Industrial Robot: An International Journal, 42, 5-10. https://doi.org/10.1108/ir-08-2014-0379
[13]
Cao, J., Xie, S.Q., Das, R. and Zhu, G.L. (2014) Control Strategies for Effective Robot Assisted Gait Rehabilitation: The State of Art and Future Prospects. Medical Engineering & Physics, 36, 1555-1566. https://doi.org/10.1016/j.medengphy.2014.08.005
[14]
Huo, W., Mohammed, S. and Amirat, Y. (2019) Impedance Reduction Control of a Knee Joint Human-Exoskeleton System. IEEE Transactions on Control Systems Technology, 27, 2541-2556. https://doi.org/10.1109/tcst.2018.2865768
[15]
Kim, S. and Bae, J. (2017) Force-mode Control of Rotary Series Elastic Actuators in a Lower Extremity Exoskeleton Using Model-Inverse Time Delay Control. IEEE/ASME Transactions on Mechatronics, 22, 1392-1400. https://doi.org/10.1109/tmech.2017.2687979
[16]
Yuan, T., Zhang, C., Yi, F., Lv, P., Li, S. and Zhang, M. (2023) Adaptive Position Tracking Control of the Lower Limb Exoskeleton Robot with an Uncertain Dynamic Model. 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), Ningbo, 18-22 August 2023, 1407-1412. https://doi.org/10.1109/iciea58696.2023.10241510
[17]
Jiang, X.Z., Xiong, C.H., Sun, R.L. and Xiong, Y.L. (2010) Fuzzy Hybrid Force-Position Control for the Robotic Arm of an Upper Limb Rehabilitation Robot Powered by Pneumatic Muscles. 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, 7-9 November 2010, 1-4. https://doi.org/10.1109/iceee.2010.5661226
[18]
Teng, L., Gull, M.A. and Bai, S. (2020) PD-Based Fuzzy Sliding Mode Control of a Wheelchair Exoskeleton Robot. IEEE/ASME Transactions on Mechatronics, 25, 2546-2555. https://doi.org/10.1109/tmech.2020.2983520
[19]
Sun, J., Kramer, E.H. and Rosen, J. (2024) A Safety-Focused Admittance Control Approach for Physical Human-Robot Interaction with Rigid Multi-Arm Serial Link Exoskeletons. IEEE/ASME Transactions on Mechatronics.
[20]
Wu, Q., Wang, Z., Chen, Y. and Wu, H. (2024) Barrier Lyapunov Function-Based Fuzzy Adaptive Admittance Control of an Upper Limb Exoskeleton Using RBFNN Compensation. IEEE/ASMETransactionsonMechatronics. https://doi.org/10.1109/tmech.2024.3392604
[21]
Wang, X., Zhang, R., Miao, Y., An, M., Wang, S. and Zhang, Y. (2024) PI2-Based Adaptive Impedance Control for Gait Adaption of Lower Limb Exoskeleton. IEEE/ASMETransactionsonMechatronics. https://doi.org/10.1109/tmech.2024.3370954
[22]
Xing, X., Zhang, S., Huang, T., Huang, J.S., Su, H. and Li, Y. (2024) Spatial Iterative Learning Torque Control of Robotic Exoskeletons for High Accuracy and Rapid Convergence Assistance. IEEE/ASMETransactionsonMechatronics. https://doi.org/10.1109/tmech.2024.3365045
[23]
Yin, M., Shang, D., Cao, W., Ma, Y., Li, J., Tian, D., et al. (2024) Rotation Angle Control Strategy for the Hip Joint of an Exoskeleton Robot Assisted by Paraplegic Patients Considering Time-Varying Inertia. IEEETransactionsonAutomationScienceandEngineering. https://doi.org/10.1109/tase.2024.3370168
[24]
Li, X., Hou, C. and He, J. (2024) Saturated Sliding Mode Control Scheme for a New Wearable Back-Support Exoskeleton. IEEETransactionsonAutomationScienceandEngineering, 21, 1392-1405. https://doi.org/10.1109/tase.2023.3241619
[25]
Chang, C., Casas, J. and Duenas, V.H. (2023) Closed-loop Kinematic and Indirect Force Control of a Cable-Driven Knee Exoskeleton: A Lyapunov-Based Switched Systems Approach. IEEEOpenJournalofControlSystems, 2, 171-184. https://doi.org/10.1109/ojcsys.2023.3289771
[26]
Huang, P., Li, Z., Zhou, M., Li, X. and Cheng, M. (2022) Fuzzy Enhanced Adaptive Admittance Control of a Wearable Walking Exoskeleton with Step Trajectory Shaping. IEEETransactionsonFuzzySystems, 30, 1541-1552. https://doi.org/10.1109/tfuzz.2022.3162700
[27]
Sun, W., Lin, J., Su, S., Wang, N. and Er, M.J. (2021) Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton. IEEETransactionsonCybernetics, 51, 1099-1109. https://doi.org/10.1109/tcyb.2020.2972582
[28]
Li, Z., Zuo, W. and Li, S. (2020) Zeroing Dynamics Method for Motion Control of Industrial Upper-Limb Exoskeleton System with Minimal Potential Energy Modulation. Measurement, 163, Article ID: 107964. https://doi.org/10.1016/j.measurement.2020.107964
[29]
Chen, C., Du, Z., He, L., Wang, J., Wu, D. and Dong, W. (2019) Active Disturbance Rejection with Fast Terminal Sliding Mode Control for a Lower Limb Exoskeleton in Swing Phase. IEEEAccess, 7, 72343-72357. https://doi.org/10.1109/access.2019.2918721
[30]
Korayem, M.H., Shafei, A.M. and Dehkordi, S.F. (2013) Systematic Modeling of a Chain of N-Flexible Link Manipulators Connected by Revolute-Prismatic Joints Using Recursive Gibbs-Appell Formulation. ArchiveofAppliedMechanics, 84, 187-206. https://doi.org/10.1007/s00419-013-0793-y
[31]
Korayem, M., Shafei, A., Doosthoseini, M., Absalan, F. and Kadkhodaei, B. (2015) Theoretical and Experimental Investigation of Viscoelastic Serial Robotic Manipulators with Motors at the Joints Using Timoshenko Beam Theory and Gibbs-Appell Formulation. ProceedingsoftheInstitutionofMechanicalEngineers, PartK: JournalofMulti-BodyDynamics, 230, 37-51. https://doi.org/10.1177/1464419315574406
[32]
Zhao, X., Chen, Y., Zhao, H. and Dong, F. (2018) Udwadia-Kalaba Equation for Constrained Mechanical Systems: Formulation and Applications. ChineseJournalofMechanicalEngineering, 31, Article No. 106. https://doi.org/10.1186/s10033-018-0310-x
[33]
Yang, Y., Huang, D. and Dong, X. (2019) Enhanced Neural Network Control of Lower Limb Rehabilitation Exoskeleton by Add-On Repetitive Learning. Neurocomputing, 323, 256-264. https://doi.org/10.1016/j.neucom.2018.09.085