1) The observation by Allais of the precession of pendulums from 1954 to 1960 highlighted regularities of astral origin an in-depth analysis of which showed that, apparently, no classical phenomenon can explain them. These regularities were diurnal waves whose periods are characteristic of astral influence (the main ones being 24 h and 24 h 50 min), annual and semi-annual components, and a multi-annual component of approximately 6 years, an influence of Jupiter being a very good candidate to explain it. 2) Allais had experimentally established that all these astral influences were expressed globally on the pendulum by an action tending to call back its plane of oscillation towards a direction variable in time, and which ovalized its trajectory. In 2019 the observation of 2 pendulums in Horodnic (Romania), thanks to the use of an automatic alidade, made it possible to identify the main mechanism that, very probably, acted on the pendulum to achieve this result. This perturbation model, called “linear anisotropy”, is characterized by its “coefficient of anisotropy” η, and by the azimuth of its “direction of anisotropy”. The composition of 2 linear anisotropies is always a linear anisotropy. 3) In the search for the phenomena which could be at the origin of all what precedes, the fact that they must create an ovalization immediately eliminates some of them. 4) We have calculated the values of η corresponding to the 24 h and 24 h 50 min waves both for the observations in Horodnic and the Allais observations. The order of magnitude (some 10?7) is effectively the same in both cases. 5) Mathematically, the regularities discovered may result of a new force field but also, as Allais proposes, from the creation, under the astral influences, of a local anisotropy of the medium in which the pendulum oscillates. In the first case the length of the pendulum is involved, in the second one not. The data available do not make it possible to decide. 6) The joint exploitation, in mechanics and optics, of Allais observations and of observations by other experimenters provides additional information: a) Allais, and after him several other scientists, discovered also marked anomalies in the precession of pendulums during certain eclipses, and maybe certain other syzygies. For the few eclipses for which both something was observed and sufficient data were available (one of them being a lunar eclipse for which nothing had been published until now), it was always the above perturbation model which
References
[1]
Allais, M. (1997) L’Anisotropie de l’Espace—La nécessaire révision de certains post-ulats des théories contemporaines. Editions Clément Juglar.
[2]
Allais, M. (2019) The Anisotropy of Space—The Necessary Revision of Certain Postulates of Contemporary Theories. Editions L’Harmattan.
[3]
Allais, M. (1957) Observation des mouvements du pendule paraconique. ComptesRendusdel’AcadémiedesSciences, 245, 1697-1700.
[4]
Allais, M. (1957) Analyse harmonique des mouvements du pendule paraconique. ComptesRendusdel’AcadémiedesSciences, 245, 1875-1879.
[5]
Allais, M. (1957) Mouvement du pendule paraconique et éclipse totale de Soleil du 30 juin 1954. ComptesRendusdel’AcadémiedesSciences, 245, 2001-2003.
[6]
Allais, M. (1957) Théorie du pendule paraconique et influence lunisolaire. ComptesRendusdel’Acad’emiedesSciences, 245, 2170-2173.
[7]
Allais, M. (1957) Application du test de Schuster généralisé à l’analyse harmonique des azimuts du pendule paraconique. ComptesRendusdel’AcadémiedesSciences, 245, 2467-2470.
[8]
Allais, M. (1958) Nouvelles expériences sur le pendule paraconique à support anisotrope. ComptesRendusdel’AcadémiedesSciences, 247, 1428-1431.
[9]
Allais, M. (1958) Structure périodique des mouvements du pendule paraconique à support anisotrope à Bougival et Saint-Germain, en juillet 1958. ComptesRendusdel’AcadémiedesSciences, 247, 2284-2287.
[10]
Allais, M. (1959) Détermination expérimentale de l’influence de l’anisotropie du support sur le mouvement du pendule paraconique à support anisotrope. ComptesRendusdel’AcadémiedesSciences, 248, 764-767.
[11]
Allais, M. (1959) Détermination expérimentale de l’influence de l’inclinaison de la surface portante sur le mouvement du pendule paraconique à support anisotrope. ComptesRendusdel’AcadémiedesSciences, 248, 359-362.
[12]
Allais, M. (1959) Should the Laws of Gravitation Be Reconsidered? Aero/SpaceEngineering, 9, 46-52.
[13]
Allais, M. (1959) Should the Laws of Gravitation Be Reconsidered? Aero/SpaceEngineering, 10, 51-55.
[14]
Goodey, T., Olenici, D., Deloly, J. and Verreault, R. (2022) Confirmation of 24 h 50 min Lunar Periodicity, Apparently Inexplicable by Classical Factors, in Precession of Allais Pendulum. Journal of Modern Physics, 13, 1598-1634. https://doi.org/10.4236/jmp.2022.1312097
[15]
Deloly, J. (2023) Inexplicable Multi-Annual Astral Action on the Precession of Allais Pendulum: An Influence of the Solar System (and Especially of Jupiter?). Journal of Modern Physics, 14, 953-988. https://doi.org/10.4236/jmp.2023.146053
[16]
Verreault, R. (2017) The Anisosphere as a New Tool for Interpreting Foucault Pendulum Experiments. Part I: Harmonic Oscillators. The European Physical Journal Applied Physics, 79, Article No. 31001. https://doi.org/10.1051/epjap/2017160337
[17]
Deloly, J.B. (2017) Continuation Given to Maurice Allais’s Experimental Works-State of the Situation (2015). http://www.fondationmauriceallais.org/wp-content/uploads/2016/05/situation_allais_2015-trad_2-.pdf
[18]
Mihaila, I., Marcov, N. and Pambuccian, V. (2003) Observation de l’effet d’Allais lors de l’éclipse de Soleil du 11 Aout 1999. Proceedings of the Romanian Academy, Series A, 4, 3-7.
[19]
Mihaila, I., et al. (2004) A New Confirmation of the Allais Effect during the Solar Eclipse of 31 May 2003. Proceedings of the Romanian Academy, Series A, 5, 1-7.
[20]
Mihaila, I., Marcov, N. and Pambuccian, V. (2006) Sur le mouvement du pendule de Foucault et du pendule d’Allais lors de l’éclipse de soleil du 3 Octobre 2005. Proceedings of the Romanian Academy, Series A, 7, 1-6.
[21]
Olenici, D. (2021) Studies on the Allais and Jeverdan-Antonescu-Rusu Effects during Several Planetary Alignements Pzerformed in Suceava between August 1999 and February 2001. In: AnuarulMuzeului National al Bucovine XXVI-XXVII-XXVIII 1999-2000-2001, Muzeul Național al Bucovinei, 660-690.
[22]
Miller, D.C. (1933) The Ether-Drift Experiment and the Determination of the Absolute Motion of the Earth. Reviews of Modern Physics, 5, 203-242. https://doi.org/10.1103/revmodphys.5.203
[23]
Allais, M. (1999) Des régularités très significatives dans les observations interférométriques de Dayton C. Miller 1925-1926. ComptesRendusdel’AcadémiedesSciences, Series IIBMechanics-Physics-Astronomy, 327, 1405-1410. https://doi.org/10.1016/s1287-4620(00)87512-2
[24]
Allais, M. (1999) Nouvelles régularités très significatives dans les observations interférométriques de Dayton C. Miller 1925-1926. ComptesRendusdel’AcadémiedesSciences, Series IIBMechanics-Physics-Astronomy, 327, 1411-1418. https://doi.org/10.1016/s1287-4620(00)87513-4
[25]
Balian, R. (2000) Remarques sur les notes de Maurice Allais: Des régularités très significatives dans les observations interférométriques de Dayton C. Miller 1925-1926 [1]; Nouvelles régularités très significatives dans les observations interférométriques de Dayton C. Miller 1925-1926 [2]. ComptesRendusdel’AcadémiedesSciences, Series IV Physics, 1, 249-250. https://doi.org/10.1016/s1296-2147(00)00125-6
[26]
Allais, M. (2000) L’origine des régularités constatées dans les observations interférométriques de Dayton C. Miller 1925-1926: Variations de température ou anisotropie de l’espace. ComptesRendusdel’AcadémiedesSciences, Series IV Physics, 1, 1205-1210. https://doi.org/10.1016/s1296-2147(00)01119-7
[27]
Shankland, R.S., McCuskey, S.W., Leone, F.C. and Kuerti, G. (1955) New Analysis of the Interferometer Observations of Dayton C. Miller. Reviews of Modern Physics, 27, 167-178. https://doi.org/10.1103/revmodphys.27.167
[28]
Deloly, J. (2020) Maurice Allais, Physicien. Bulletin de la Sabix, 66, 179-193. https://doi.org/10.4000/sabix.2847
[29]
Esclangon, E. (1927) Sur la dissymétrie optique de l’espace et les lois de la réflexion. ComptesRendusdel’AcadémiedesSciences, 185, 1593-1595.
[30]
Esclangon, E. (1928) Sur l’existence d’une dissymétrie de l’espace. Journal des Observateurs, 11, 49-63.
[31]
Esclangon, E. (1935) Recherches expérimentales sur la dissymétrie optique de l’espace. ComptesRendusdel’AcadémiedesSciences, 200, 1165-1168.