|
纳米SiO2/橡胶粉复合改性沥青性能研究
|
Abstract:
为增强重交沥青路面寿命,确保其在服役周期内保持良好的高低温性能,向基质沥青中添加纳米SiO2和橡胶粉两种外掺剂。首先,基于针入度试验、延度试验、软化点试验分析改性沥青的基本性能;其次,通过动态剪切流变试验(DSR),评价不同温度和不同频率等因素对复合改性沥青高温性能的影响;最后,应用弯曲梁流变试验(BBR),分析纳米SiO2/橡胶粉复合改性沥青的低温流变性能;研究结果表明:纳米SiO2的加入,使得橡胶粉改性沥青的针入度降低,软化点、延度升高;同时,橡胶粉改性沥青的车辙因子有所提高,可知纳米SiO2提高了橡胶粉改性沥青的高温抗车辙性能;劲度模量S值降低、蠕变速率m值升高可以发现,纳米SiO2和橡胶粉复合掺加后提高了沥青的低温抗裂性能。
To enhance the lifespan of heavy-duty asphalt pavements and ensure good performance under both high and low temperatures throughout their service life, Nano-SiO2 and rubber powder were added as external additives to the base asphalt. First, the basic properties of the modified asphalt were analyzed through penetration tests, ductility tests, and softening point tests. Next, the high-temperature performance of the composite modified asphalt was evaluated using Dynamic Shear Rheometer (DSR) tests, considering various temperatures and frequencies. Finally, the low-temperature rheological properties of the Nano-SiO2/rubber powder composite modified asphalt were analyzed using the Bending Beam Rheometer (BBR) test. The results indicate that the addition of Nano-SiO2 reduces the penetration index and increases the softening point and ductility of the rubber powder modified asphalt. Additionally, the rutting factor of the rubber powder modified asphalt improved, suggesting that Nano-SiO2 enhances the high-temperature rutting resistance of the rubber powder modified asphalt. The reduction in stiffness modulus (S value) and the increase in creep rate (m value) demonstrate that the combined addition of Nano-SiO2 and rubber powder improves the low-temperature crack resistance of the asphalt.
[1] | 陈呈. 稳定型橡胶沥青的改性机理与性能研究[D]: [硕士学位论文]. 南京: 东南大学, 2016. |
[2] | 李波, 李鹏, 张新雨, 等. 废旧胶粉的反应与交联作用对橡胶沥青黏度的影响[J]. 长安大学学报(自然科学版), 2017, 37(2): 26-34. |
[3] | 王尉, 何亮, 王大为, 等. 橡胶沥青及混合料低温性能研究进展[J]. 公路, 2016, 61(1): 181-187. |
[4] | 许明娟. 废旧塑料橡胶复合改性沥青应用技术研究[D]: [硕士学位论文]. 南京: 东南大学, 2015. |
[5] | Saboo, N., Singh, B., Kumar, P. and Vikram, D. (2018) Study on Viscosity of Conventional and Polymer Modified Asphalt Binders in Steady and Dynamic Shear Domain. Mechanics of Time-Dependent Materials, 22, 67-78. https://doi.org/10.1007/s11043-017-9352-1 |
[6] | Goliaszewski, A.E., Hart, P.R., Deng, F., et al. (2004) Cross-Linker for Modified Asphalt. US Patent No. 10841596. |
[7] | 郭诗惠, 刘炳. 纳米材料复配对SBS改性沥青流变及抗老化性能的影响[J]. 中外公路, 2019, 39(3): 241-246. |
[8] | 唐逸珺, 康杰分, 庞来学, 等. 纳米改性沥青基材料功能化研究进展[J/OL]. http://kns.cnki.net/kcms/detail/50.1078.TB.20240619.1641.006.html, 2024-07-10. |
[9] | 洪浩凯. 多尺度纳米材料改性沥青的老化机理研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2020. |
[10] | 张恒龙, 朱崇政, 张葆琳, 等. 表面修饰纳米二氧化硅对沥青性能的影响[J]. 建筑材料学报, 2014, 17(1): 172-176. |
[11] | Li, Y., Wu, S. and Amirkhanian, S. (2018) Investigation of the Graphene Oxide and Asphalt Interaction and Its Effect on Asphalt Pavement Performance. Construction and Building Materials, 165, 572-584. https://doi.org/10.1016/j.conbuildmat.2018.01.068 |
[12] | 交通运输部公路科学研究院. JTG E20-2011公路工程沥青及沥青混合料试验规程[S]. 北京: 人民交通出版社, 2011. |