|
长江上游地区地表温度变化与驱动因素研究
|
Abstract:
地表温度(Land Surface Temperature, LST)是研究地表和大气物质和能量交换的重要参数。基于MYD11A2的地表温度数据,结合气温、降水和归一化植被指数(NDVI)数据,利用Theil-Sen趋势法、Mann-Kendall显著性检验法以及相关性分析法,对2003~2021年长江上游地区的年度、昼夜以及四季时间尺度的地表温度变化规律进行分析,并深入探讨了上游地表温度与环境因子之间的关系。研究结果表明:1) 长江上游地区的年均地表温度呈现出明显的西低东高的空间格局,其多年平均地表温度约为10.31℃。2) 在2003~2021年间,长江上游地区整体呈现出升温趋势,升温速率为0.18℃?10a?1。昼夜地表温度呈现出明显的不对称增温现象,夜间地表温度升温速率远快于白天;变化趋势在四季表现为:夏季 > 春季 > 秋季 > 冬季。除冬季呈降温趋势,夏、春、冬季均呈升温趋势。3) 上游地区地表温度与气温整体呈正相关关系,而与降水和NDVI呈负相关关系。这些结果为我们更好地理解长江上游地区地表温度变化规律提供了重要依据,并为相关地区的生态环境保护和气候适应提供了科学支持。
Land surface temperature (LST) is a crucial parameter for studying the exchange of matter and energy between the surface and the atmosphere. The Theil-Sen trend method, Mann-Kendall significance test method, and correlation analysis method were used to analyze the LST data of MYD11A2 in combination with air temperature, precipitation, and the normalized vegetation index (NDVI) data. The study analyzed the annual, diurnal, and four-season time scales of land surface temperature (LST) in the upper reaches of the Yangtze River from 2003 to 2021 and discussed the relationship between LST and environmental factors. The results indicate that: 1) The annual average land surface temperature in the upper reaches of the Yangtze River is lower in the west and higher in the east, with an average of about 10.31?C. 2) From 2003 to 2021, the upper reaches of the Yangtze River have experienced an overall warming trend, with a rate of 0.18?C?10a?1. The land surface temperature (LST) increases asymmetrically between day and night, with a faster increase at night. The seasonal variation trend is as follows: summer > spring > autumn > winter. While winter shows a cooling trend, all other seasons show a warming trend. 3) The surface temperature in the upstream region showed a positive correlation with air temperature, but a negative correlation with precipitation and NDVI. These findings provide a valuable foundation for comprehending the pattern of surface temperature variation in the upper reaches of the Yangtze River. Additionally, they offer scientific support for the protection of ecological environments and climate adaptation in related areas.
[1] | Masson-Delmotte, V., Zhai, P., Pirani, A., et al. (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2. |
[2] | Xiao, Y., Zhao, W., Ma, M. and He, K. (2021) Gap-Free LST Generation for MODIS/Terra LST Product Using a Random Forest-Based Reconstruction Method. Remote Sensing, 13, Article No. 2828. https://doi.org/10.3390/rs13142828 |
[3] | Zhang, J.Y., Lun, Y.R., Liu, Y.X., et al. (2022) CMIP6 Evaluation and Projection of Climate Change in Tibetan Plateau. Journal of Beijing Normal University (Natural Science), 58, 77-89. |
[4] | Mao, K.B., Ma, Y., Tan, X.L., Shen, X.Y., Liu, G., Li, Z.L., et al. (2017) Global Surface Temperature Change Analysis Based on MODIS Data in Recent Twelve Years. Advances in Space Research, 59, 503-512. https://doi.org/10.1016/j.asr.2016.11.007 |
[5] | Moradi, M. and Darand, M. (2022) Trend Analysis of Land Surface Temperature over Iran Based on Land Cover and Topography. International Journal of Environmental Science and Technology, 19, 7229-7242. https://doi.org/10.1007/s13762-021-03900-3 |
[6] | Yang, M., Zhao, W., Zhan, Q. and Xiong, D. (2021) Spatiotemporal Patterns of Land Surface Temperature Change in the Tibetan Plateau Based on MODIS/Terra Daily Product from 2000 to 2018. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6501-6514. https://doi.org/10.1109/jstars.2021.3089851 |
[7] | Wei, B., Bao, Y., Yu, S., Yin, S. and Zhang, Y. (2021) Analysis of Land Surface Temperature Variation Based on MODIS Data a Case Study of the Agricultural Pastural Ecotone of Northern China. International Journal of Applied Earth Observation and Geoinformation, 100, 102342. https://doi.org/10.1016/j.jag.2021.102342 |
[8] | Aguilar-Lome, J., Espinoza-Villar, R., Espinoza, J., Rojas-Acuña, J., Willems, B.L. and Leyva-Molina, W. (2019) Elevation-Dependent Warming of Land Surface Temperatures in the Andes Assessed Using MODIS LST Time Series (2000-2017). International Journal of Applied Earth Observation and Geoinformation, 77, 119-128. https://doi.org/10.1016/j.jag.2018.12.013 |
[9] | 魏宝成. 北方农牧交错带土地覆被变化对地表温度的反馈作用研究[D]: [博士学位论文]. 兰州: 兰州大学, 2019. |
[10] | 赵杰, 杜自强, 张红, 张霄羽, 赵虹. 中国季节性昼夜增温的不对称性及其对植被活动的影响[J]. 生态学报, 2021, 38(11): 3909-3919. |
[11] | 郑奕, 刘艳, 吉春容. 环塔里木盆地非对称性增温变化及其对特色林果物候期的影响[J]. 中国农学通报, 2017, 33(31): 92-97. |
[12] | Vargas Zeppetello, L.R., Donohoe, A. and Battisti, D.S. (2019) Does Surface Temperature Respond to or Determine Downwelling Long-Wave Radiation? Geophysical Research Letters, 46, 2781-2789. https://doi.org/10.1029/2019gl082220 |
[13] | Zeng, Z., Piao, S., Li, L.Z.X., Zhou, L., Ciais, P., Wang, T., et al. (2017) Climate Mitigation from Vegetation Biophysical Feedbacks during the Past Three Decades. Nature Climate Change, 7, 432-436. https://doi.org/10.1038/nclimate3299 |
[14] | Xue, Y., Lu, H., Guan, Y., Tian, P. and Yao, T. (2021) Impact of Thermal Condition on Vegetation Feedback under Greening Trend of China. Science of the Total Environment, 785, Article ID: 147380. https://doi.org/10.1016/j.scitotenv.2021.147380 |
[15] | Kafy, A.-.A., Faisal, A., Al Rakib, A., Fattah, M.A., Rahaman, Z.A. and Sattar, G.S. (2022) Impact of Vegetation Cover Loss on Surface Temperature and Carbon Emission in a Fastest-Growing City, Cumilla, Bangladesh. Building and Environment, 208, Article ID: 108573. https://doi.org/10.1016/j.buildenv.2021.108573 |
[16] | Scott, C.E., Monks, S.A., Spracklen, D.V., Arnold, S.R., Forster, P.M., Rap, A., et al. (2018) Impact on Short-Lived Climate Forcers Increases Projected Warming Due to Deforestation. Nature Communications, 9, Article No. 157. https://doi.org/10.1038/s41467-017-02412-4 |
[17] | Vargas Zeppetello, L.R., Parsons, L.A., Spector, J.T., Naylor, R.L., Battisti, D.S., Masuda, Y.J., et al. (2020) Large Scale Tropical Deforestation Drives Extreme Warming. Environmental Research Letters, 15, Article ID: 084012. https://doi.org/10.1088/1748-9326/ab96d2 |
[18] | Shen, M., Piao, S., Jeong, S., Zhou, L., Zeng, Z., Ciais, P., et al. (2015) Evaporative Cooling over the Tibetan Plateau Induced by Vegetation Growth. Proceedings of the National Academy of Sciences, 112, 9299-9304. https://doi.org/10.1073/pnas.1504418112 |
[19] | Alkama, R., Forzieri, G., Duveiller, G., Grassi, G., Liang, S. and Cescatti, A. (2022) Vegetation-Based Climate Mitigation in a Warmer and Greener World. Nature Communications, 13, Article No. 606. https://doi.org/10.1038/s41467-022-28305-9 |
[20] | Pearson, R.G., Phillips, S.J., Loranty, M.M., Beck, P.S.A., Damoulas, T., Knight, S.J., et al. (2013) Shifts in Arctic Vegetation and Associated Feedbacks under Climate Change. Nature Climate Change, 3, 673-677. https://doi.org/10.1038/nclimate1858 |
[21] | Hooker, J., Duveiller, G. and Cescatti, A. (2018) A Global Dataset of Air Temperature Derived from Satellite Remote Sensing and Weather Stations. Scientific Data, 5, Article ID: 180246. https://doi.org/10.1038/sdata.2018.246 |
[22] | Yu, Y., Shang, G., Duan, S., Yu, W., Labed, J. and Li, Z. (2022) Quantifying the Influences of Driving Factors on Land Surface Temperature during 2003-2018 in China Using Convergent Cross Mapping Method. Remote Sensing, 14, Article No. 3280. https://doi.org/10.3390/rs14143280 |
[23] | Song, C., Yang, J., Wu, F., Xiao, X., Xia, J. and Li, X. (2022) Response Characteristics and Influencing Factors of Carbon Emissions and Land Surface Temperature in Guangdong Province, China. Urban Climate, 46, Article ID: 101330. https://doi.org/10.1016/j.uclim.2022.101330 |
[24] | Gonzalez-Trevizo, M.E., Martinez-Torres, K.E., Armendariz-Lopez, J.F., Santamouris, M., Bojorquez-Morales, G. and Luna-Leon, A. (2021) Research Trends on Environmental, Energy and Vulnerability Impacts of Urban Heat Islands: An Overview. Energy and Buildings, 246, Article ID: 111051. https://doi.org/10.1016/j.enbuild.2021.111051 |
[25] | Déry, S.J. and Wood, E.F. (2005) Observed Twentieth Century Land Surface Air Temperature and Precipitation Covariability. Geophysical Research Letters, 32, L21414. https://doi.org/10.1029/2005gl024234 |
[26] | Trenberth, K.E. and Shea, D.J. (2005) Relationships between Precipitation and Surface Temperature. Geophysical Research Letters, 32, L14703. https://doi.org/10.1029/2005gl022760 |
[27] | 苏远航, 张峰源, 刘滨辉. 小兴安岭森林植被物候对气候变化的响应[J]. 北京林业大学学报, 2023, 45(3): 34-47. https://doi.org/10.12171/j.1000-1522.20210364 |
[28] | 陈婷婷. 基于MODIS数据的山东省地表温度长期趋势变化及影响因素研究[D]: [硕士学位论文]. 济南: 山东大学, 2021. |