|
DNA甲基化对急性髓系白血病作用的研究进展
|
Abstract:
研究证实,在基因的表观遗传调控中DNA甲基化起着至关重要的作用。而DNA甲基转移酶(DNMT)催化DNA甲基化,这是DNA甲基化模式形成和保持的必要条件。在哺乳动物细胞中,有三种关键的DNMT负责着不同的任务。首先是DNMT1,负责维持DNA的甲基化状态,保持细胞功能正常运转。而另外两种则是DNMT3a和DNMT3b,它们则负责推动DNA从头开始的甲基化过程。目前,急性髓系白血病(AML)的病因仍无法完全阐明。通过研究发现,异常的表观遗传学变化与AML的发病密切相关。深入探讨DNA甲基化与AML之间的联系,将为治疗这种疾病和开发新药物提供关键的分子靶点。这一领域的突破将为医学界带来新的希望,为患者提供更有效的治疗方案。
Research has confirmed that DNA methylation plays a crucial role in the epigenetic regulation of genes. DNA methyltransferase (DNMT) catalyzes DNA methylation, which is a necessary condition for the formation and maintenance of DNA methylation patterns. In mammalian cells, there are three key DNMTs responsible for different tasks. Firstly, DNMT1 is responsible for maintaining the methylation status of DNA and ensuring the normal functioning of cells. The other two are DNMT3a and DNMT3b, which are responsible for driving the DNA methylation process from scratch. At present, the etiology of acute myeloid leukemia (AML) cannot be fully elucidated. Through research, it has been found that abnormal epigenetic changes are closely related to the onset of AML. Exploring the relationship between DNA methylation and AML in depth will provide key molecular targets for the treatment of this disease and the development of new drugs. Breakthroughs in this field will bring new hope to the medical community and provide more effective treatment options for patients.
[1] | Döhner, H., Weisdorf, D.J. and Bloomfield, C.D. (2015) Acute Myeloid Leukemia. New England Journal of Medicine, 373, 1136-1152. https://doi.org/10.1056/nejmra1406184 |
[2] | Pelcovits, A. and Niroula, R. (2020) Acute Myeloid Leukemia: A Review. Rhode Island Medical Journal, 103, 38-40. |
[3] | Chattopadhyaya, S. and Ghosal, S. (2022) DNA Methylation: A Saga of Genome Maintenance in Hematological Perspective. Human Cell, 35, 448-461. https://doi.org/10.1007/s13577-022-00674-9 |
[4] | 张闻, 郑多. 全国普通高等医学院校五年制临床医学专业“十三五”规划教材 医学生物学[M]. 北京: 中国医药科技出版社, 2016: 105. |
[5] | Subramaniam, D., Thombre, R., Dhar, A. and Anant, S. (2014) DNA Methyltransferases: A Novel Target for Prevention and Therapy. Frontiers in Oncology, 4, Article 80. https://doi.org/10.3389/fonc.2014.00080 |
[6] | Cui, D. and Xu, X. (2018) DNA Methyltransferases, DNA Methylation, and Age-Associated Cognitive Function. International Journal of Molecular Sciences, 19, Article 1315. https://doi.org/10.3390/ijms19051315 |
[7] | Du, Z., Song, J., Wang, Y., Zhao, Y., Guda, K., Yang, S., et al. (2010) DNMT1 Stability Is Regulated by Proteins Coordinating Deubiquitination and Acetylation-Driven Ubiquitination. Science Signaling, 3, ra80. https://doi.org/10.1126/scisignal.2001462 |
[8] | Bai, J., Zhang, X., Hu, K., Liu, B., Wang, H., Li, A., et al. (2016) Silencing DNA Methyltransferase 1 (DNMT1) Inhibits Proliferation, Metastasis and Invasion in ESCC by Suppressing Methylation of RASSF1A and DAPK. Oncotarget, 7, 44129-44141. https://doi.org/10.18632/oncotarget.9866 |
[9] | Scifres, C.M., Catov, J.M. and Simhan, H. (2012) Maternal Serum Fatty Acid Binding Protein 4 (FABP4) and the Development of Preeclampsia. The Journal of Clinical Endocrinology & Metabolism, 97, E349-E356. https://doi.org/10.1210/jc.2011-2276 |
[10] | Wang, X., Zhang, H. and Li, Y. (2019) Preliminary Study on the Role of Mir‑148a and DNMT1 in the Pathogenesis of Acute Myeloid Leukemia. Molecular Medicine Reports, 19, 2943-2952. https://doi.org/10.3892/mmr.2019.9913 |
[11] | Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C.E.A., Callegari, E., et al. (2009) Microrna-29b Induces Global DNA Hypomethylation and Tumor Suppressor Gene Reexpression in Acute Myeloid Leukemia by Targeting Directly DNMT3A and 3B and Indirectly DNMT1. Blood, 113, 6411-6418. https://doi.org/10.1182/blood-2008-07-170589 |
[12] | Li, S., Chowdhury, R., Liu, F., Chou, A.P., Li, T., Mody, R.R., et al. (2014) Tumor-Suppressive miR148a Is Silenced by CpG Island Hypermethylation in IDH1-Mutant Gliomas. Clinical Cancer Research, 20, 5808-5822. https://doi.org/10.1158/1078-0432.ccr-14-0234 |
[13] | Zhang, Y.-F. and Zhou, L. (2022) Progress on Biological Functions of miRNA-148/152 Family Members in Malignant Tumors. Fudan University Journal of Medical Sciences, 49, 447-453. |
[14] | Li, S., Jin, X., Wu, H., Wang, Y., Li, X., Guo, Y., et al. (2017) HA117 Endows HL60 Cells with a Stem-Like Signature by Inhibiting the Degradation of DNMT1 via Its Ability to Down-Regulate Expression of the GGL Domain of RGS6. PLOS ONE, 12, e0180142. https://doi.org/10.1371/journal.pone.0180142 |
[15] | Tagde, A., Rajabi, H., Stroopinsky, D., Gali, R., Alam, M., Bouillez, A., et al. (2016) MUC1-C Induces DNA Methyltransferase 1 and Represses Tumor Suppressor Genes in Acute Myeloid Leukemia. Oncotarget, 7, 38974-38987. https://doi.org/10.18632/oncotarget.9777 |
[16] | Shen, N., Yan, F., Pang, J., Wu, L., Al-Kali, A., Litzow, M.R., et al. (2014) A Nucleolin-DNMT1 Regulatory Axis in Acute Myeloid Leukemogenesis. Oncotarget, 5, 5494-5509. https://doi.org/10.18632/oncotarget.2131 |
[17] | Furuhashi, M. and Hotamisligil, G.S. (2008) Fatty Acid-Binding Proteins: Role in Metabolic Diseases and Potential as Drug Targets. Nature Reviews Drug Discovery, 7, 489-503. https://doi.org/10.1038/nrd2589 |
[18] | Smathers, R.L. and Petersen, D.R. (2011) The Human Fatty Acid-Binding Protein Family: Evolutionary Divergences and Functions. Human Genomics, 5, Article No. 170. https://doi.org/10.1186/1479-7364-5-3-170 |
[19] | Yang, A., Zhang, H., Sun, Y., Wang, Y., Yang, X., Yang, X., et al. (2016) Modulation of FABP4 Hypomethylation by DNMT1 and Its Inverse Interaction with Mir-148a/152 in the Placenta of Preeclamptic Rats and HTR-8 Cells. Placenta, 46, 49-62. https://doi.org/10.1016/j.placenta.2016.08.086 |
[20] | Yan, F., Shen, N., Pang, J.X., Zhang, Y.W., Rao, E.Y., Bode, A.M., et al. (2016) Fatty Acid-Binding Protein FABP4 Mechanistically Links Obesity with Aggressive AML by Enhancing Aberrant DNA Methylation in AML Cells. Leukemia, 31, 1434-1442. https://doi.org/10.1038/leu.2016.349 |
[21] | Shen, N., Yan, F., Pang, J., Zhao, N., Gangat, N., Wu, L., et al. (2017) Inactivation of Receptor Tyrosine Kinases Reverts Aberrant DNA Methylation in Acute Myeloid Leukemia. Clinical Cancer Research, 23, 6254-6266. https://doi.org/10.1158/1078-0432.ccr-17-0235 |
[22] | Rau, R.E., Rodriguez, B.A., Luo, M., Jeong, M., Rosen, A., Rogers, J.H., et al. (2016) DOT1L as a Therapeutic Target for the Treatment of DNMT3A-Mutant Acute Myeloid Leukemia. Blood, 128, 971-981. https://doi.org/10.1182/blood-2015-11-684225 |
[23] | Yang, L., Rau, R. and Goodell, M.A. (2015) DNMT3A in Haematological Malignancies. Nature Reviews Cancer, 15, 152-165. https://doi.org/10.1038/nrc3895 |
[24] | Spencer, D.H., Russler-Germain, D.A., Ketkar, S., Helton, N.M., Lamprecht, T.L., Fulton, R.S., et al. (2017) CpG Island Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell, 168, 801-816.E13. https://doi.org/10.1016/j.cell.2017.01.021 |
[25] | Ribeiro, A.F.T., Pratcorona, M., Erpelinck-Verschueren, C., Rockova, V., Sanders, M., Abbas, S., et al. (2012) Mutant DNMT3A: A Marker of Poor Prognosis in Acute Myeloid Leukemia. Blood, 119, 5824-5831. https://doi.org/10.1182/blood-2011-07-367961 |
[26] | 姜慧慧, 杨新, 弭苗苗, 辛钰, 武洪远, 孙成铭. DNA甲基转移酶在急性髓系白血病中作用的研究进展[J]. 国际检验医学杂志, 2022, 43(1): 106-109+125. |
[27] | Thol, F., Damm, F., Lüdeking, A., Winschel, C., Wagner, K., Morgan, M., et al. (2011) Incidence and Prognostic Influence of DNMT3A Mutations in Acute Myeloid Leukemia. Journal of Clinical Oncology, 29, 2889-2896. https://doi.org/10.1200/jco.2011.35.4894 |
[28] | Brunetti, L., Gundry, M.C. and Goodell, M.A. (2016) DNMT3A in Leukemia. Cold Spring Harbor Perspectives in Medicine, 7, a030320. https://doi.org/10.1101/cshperspect.a030320 |
[29] | Thol, F., Damm, F., Lüdeking, A., Winschel, C., Wagner, K., Morgan, M., et al. (2011) Incidence and Prognostic Influence of DNMT3A Mutations in Acute Myeloid Leukemia. Journal of Clinical Oncology, 29, 2889-2896. https://doi.org/10.1200/jco.2011.35.4894 |
[30] | Panuzzo, C., Signorino, E., Calabrese, C., Ali, M.S., Petiti, J., Bracco, E., et al. (2020) Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. Journal of Clinical Medicine, 9, Article 802. https://doi.org/10.3390/jcm9030802 |
[31] | 杨晓晓, 罗兴春, 郭元成, 等. NPM1、FLT3、DNMT3A共突变急性髓系白血病的临床特征、预后及生物信息学分析[J]. 兰州大学学报(医学版), 2023, 49(4): 32-38. |
[32] | 唐善浩, 陆滢, 张丕胜, 等. 转位蛋白基因在FLT3-ITD/DNMT3A R882双突变急性髓系白血病疗效评估中的价值[J]. 中国实验血液学杂志, 2023, 31(1): 45-49. |
[33] | 张悦. 去甲基化药物治疗伴DNMT3A和TET2基因突变的老年急性髓系白血病临床及实验研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2022. |
[34] | Sinha, S., Thomas, D., Yu, L., Gentles, A.J., Jung, N., Corces-Zimmerman, M.R., et al. (2015) Mutant WT1 Is Associated with DNA Hypermethylation of PRC2 Targets in AML and Responds to EZH2 Inhibition. Blood, 125, 316-326. https://doi.org/10.1182/blood-2014-03-566018 |
[35] | Chen, X., Zhou, W., Song, R., Liu, S., Wang, S., Chen, Y., et al. (2022) Tumor Suppressor CEBPA Interacts with and Inhibits DNMT3A Activity. Science Advances, 8, eabl5220. https://doi.org/10.1126/sciadv.abl5220 |
[36] | Brunetti, L., Gundry, M.C. and Goodell, M.A. (2016) DNMT3A in Leukemia. Cold Spring Harbor Perspectives in Medicine, 7, a030320. https://doi.org/10.1101/cshperspect.a030320 |
[37] | Pløen, G.G., Nederby, L., Guldberg, P., Hansen, M., Ebbesen, L.H., Jensen, U.B., et al. (2014) Persistence of DNMT3A Mutations at Long-Term Remission in Adult Patients with AML. British Journal of Haematology, 167, 478-486. https://doi.org/10.1111/bjh.13062 |
[38] | 舒香. 成人急性髓系白血病基因突变特点及与预后等相关因素分析[D]: [硕士学位论文]. 南昌: 南昌大学, 2024. |
[39] | 王万玥, 李玉娇, 李永丽, 等. 中国成人急性髓系白血病遗传分子学特征及预后分析[J]. 现代肿瘤医学, 2024, 32(4): 703-708. |
[40] | Thol, F., Damm, F., Lüdeking, A., Winschel, C., Wagner, K., Morgan, M., et al. (2011) Incidence and Prognostic Influence of DNMT3A Mutations in Acute Myeloid Leukemia. Journal of Clinical Oncology, 29, 2889-2896. https://doi.org/10.1200/jco.2011.35.4894 |
[41] | Jian, J., Yuan, C., Ji, C., Hao, H. and Lu, F. (2023) DNA Methylation-Based Subtypes of Acute Myeloid Leukemia with Distinct Prognosis and Clinical Features. Clinical and Experimental Medicine, 23, 2639-2649. https://doi.org/10.1007/s10238-022-00980-4 |
[42] | Ley, T.J., Ding, L., Walter, M.J., McLellan, M.D., Lamprecht, T., Larson, D.E., et al. (2010) DNMT3A Mutations in Acute Myeloid Leukemia. New England Journal of Medicine, 363, 2424-2433. https://doi.org/10.1056/nejmoa1005143 |
[43] | Wong, K.K., Lawrie, C.H. and Green, T.M. (2019) Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukaemia. Biomarker Insights, 14, Article 117727191984645. https://doi.org/10.1177/1177271919846454 |
[44] | Mill, C.P., Fiskus, W., DiNardo, C.D., Qian, Y., Raina, K., Rajapakshe, K., et al. (2019) RUNX1-Targeted Therapy for AML Expressing Somatic or Germline Mutation in RUNX1. Blood, 134, 59-73. https://doi.org/10.1182/blood.2018893982 |
[45] | Hayette, S., Thomas, X., Jallades, L., Chabane, K., Charlot, C., Tigaud, I., et al. (2012) High DNA Methyltransferase DNMT3B Levels: A Poor Prognostic Marker in Acute Myeloid Leukemia. PLOS ONE, 7, e51527. https://doi.org/10.1371/journal.pone.0051527 |
[46] | 高爱, 郑亚伟, 程涛. DNA甲基化修饰在白血病发生中作用的研究进展[J]. 中华血液学杂志, 2016, 37(11): 1003-1007. |
[47] | Niederwieser, C., Kohlschmidt, J., Volinia, S., Whitman, S.P., Metzeler, K.H., Eisfeld, A., et al. (2014) Prognostic and Biologic Significance of DNMT3B Expression in Older Patients with Cytogenetically Normal Primary Acute Myeloid Leukemia. Leukemia, 29, 567-575. https://doi.org/10.1038/leu.2014.267 |
[48] | Zheng, Y., Zhang, H., Wang, Y., Li, X., Lu, P., Dong, F., et al. (2016) Loss of DNMT3b Accelerates MLL-AF9 Leukemia Progression. Leukemia, 30, 2373-2384. https://doi.org/10.1038/leu.2016.112 |
[49] | Poole, C.J., Zheng, W., Lodh, A., Yevtodiyenko, A., Liefwalker, D., Li, H., et al. (2017) DNMT3B Overexpression Contributes to Aberrant DNA Methylation and Myc-Driven Tumor Maintenance in T-ALL and Burkitt’s Lymphoma. Oncotarget, 8, 76898-76920. https://doi.org/10.18632/oncotarget.20176 |
[50] | Masetti, R., Bertuccio, S.N., Astolfi, A., Chiarini, F., Lonetti, A., Indio, V., et al. (2017) Hh/Gli Antagonist in Acute Myeloid Leukemia with CBFA2T3-GLIS2 Fusion Gene. Journal of Hematology & Oncology, 10, Article No. 26. https://doi.org/10.1186/s13045-017-0396-0 |
[51] | Bi, L., Zhou, B., Li, H., He, L., Wang, C., Wang, Z., et al. (2018) A Novel miR-375-HOXB3-CDCA3/DNMT3B Regulatory Circuitry Contributes to Leukemogenesis in Acute Myeloid Leukemia. BMC Cancer, 18, Article No. 182. https://doi.org/10.1186/s12885-018-4097-z |
[52] | Memari, F., Joneidi, Z., Taheri, B., Aval, S.F., Roointan, A. and Zarghami, N. (2018) Epigenetics and Epi-Mirnas: Potential Markers/therapeutics in Leukemia. Biomedicine & Pharmacotherapy, 106, 1668-1677. https://doi.org/10.1016/j.biopha.2018.07.133 |
[53] | Lamba, J.K., Cao, X., Raimondi, S.C., Rafiee, R., Downing, J.R., Shi, L., et al. (2018) Integrated Epigenetic and Genetic Analysis Identifies Markers of Prognostic Significance in Pediatric Acute Myeloid Leukemia. Oncotarget, 9, 26711-26723. https://doi.org/10.18632/oncotarget.25475 |
[54] | Itonaga, H., Imanishi, D., Wong, Y., Sato, S., Ando, K., Sawayama, Y., et al. (2014) Expression of Myeloperoxidase in Acute Myeloid Leukemia Blasts Mirrors the Distinct DNA Methylation Pattern Involving the Downregulation of DNA Methyltransferase DNMT3B. Leukemia, 28, 1459-1466. https://doi.org/10.1038/leu.2014.15 |
[55] | Niederwieser, C., Kohlschmidt, J., Volinia, S., Whitman, S.P., Metzeler, K.H., Eisfeld, A., et al. (2014) Prognostic and Biologic Significance of DNMT3B Expression in Older Patients with Cytogenetically Normal Primary Acute Myeloid Leukemia. Leukemia, 29, 567-575. https://doi.org/10.1038/leu.2014.267 |
[56] | 邓丽娟. DNMTs的表达及突变在急性髓系白血病中的意义[D]: [硕士学位论文]. 兰州: 兰州大学, 2021. |
[57] | Zheng, Y., Zhang, H., Wang, Y., Li, X., Lu, P., Dong, F., et al. (2016) Loss of Dnmt3b Accelerates MLL-AF9 Leukemia Progression. Leukemia, 30, 2373-2384. https://doi.org/10.1038/leu.2016.112 |
[58] | Larmonie, N.S.D., Arentsen-Peters, T.C.J.M., Obulkasim, A., Valerio, D., Sonneveld, E., Danen-van Oorschot, A.A., et al. (2017) MN1 Overexpression Is Driven by Loss of DNMT3B Methylation Activity in Inv(16) Pediatric AML. Oncogene, 37, 107-115. https://doi.org/10.1038/onc.2017.293 |