|
EB病毒相关性胃癌研究进展
|
Abstract:
EB病毒是胃癌发生的生物学病因之一,关于EB病毒感染胃上皮细胞形成胃癌的发病机制尚未完全阐明,可能与细胞间多种信号通路及肿瘤微环境相关。EB病毒相关性胃癌(EBV-aGC)具有独特的临床病理特征,预后较好。近年来随着免疫治疗等新的治疗手段的发展,为胃癌患者的治愈提供了可能。本文就EBV-aGC的临床病理特征、发病机制及治疗三方面进行综述。
Epstein-Barr virus (EBV) is one of the biological causes of gastric carcinoma. The pathogenesis of gastric carcinoma caused by EBV infection in gastric epithelial cells has not been fully elucidated, which may be related to a variety of signal pathways between cells and tumor microenvironment. EBV-associated gastric carcinoma (EBV-aGC) has unique clinicopathological features and a good prognosis. In recent years, with the development of immunotherapy and other new treatment methods, it is possible to cure patients with gastric carcinoma. This article reviews the clinical and pathological features, pathogenesis and treatment of EBV-aGC.
[1] | Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. The Lancet, 283, 702-703. https://doi.org/10.1016/s0140-6736(64)91524-7 |
[2] | Young, L.S., Yap, L.F. and Murray, P.G. (2016) Epstein-Barr Virus: More than 50 Years Old and Still Providing Surprises. Nature Reviews Cancer, 16, 789-802. https://doi.org/10.1038/nrc.2016.92 |
[3] | Tokunaga, M., Uemura, Y., Tokudome, T., Ishidate, T., Masuda, H., Okazaki, E., et al. (1993) Epstein‐Barr Virus Related Gastric Cancer in Japan: A Molecular Patho‐Epidemiological Study. Acta Pathologica Japonica, 43, 574-581. https://doi.org/10.1111/j.1440-1827.1993.tb03233.x |
[4] | Dicken, B.J., Bigam, D.L., Cass, C., Mackey, J.R., Joy, A.A. and Hamilton, S.M. (2005) Gastric Adenocarcinoma: Review and Considerations for Future Directions. Annals of Surgery, 241, 27-39. https://doi.org/10.1097/01.sla.0000149300.28588.23 |
[5] | Tan, I.B., Ivanova, T., Lim, K.H., et al. (2011) Intrinsic Subtypes of Gastric Cancer, Based on Gene Expression Pattern, Predict Survival and Respond Differently to Chemotherapy. Gastroenterology, 141, 476-485.E11. https://doi.org/10.1053/j.gastro.2011.04.042 |
[6] | Shah, M.A., Khanin, R., Tang, L., Janjigian, Y.Y., Klimstra, D.S., Gerdes, H., et al. (2011) Molecular Classification of Gastric Cancer: A New Paradigm. Clinical Cancer Research, 17, 2693-2701. https://doi.org/10.1158/1078-0432.ccr-10-2203 |
[7] | The Cancer Genome Atlas Research Network (2014) Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209. https://doi.org/10.1038/nature13480 |
[8] | Cristescu, R., Lee, J., Nebozhyn, M., Kim, K., Ting, J.C., Wong, S.S., et al. (2015) Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nature Medicine, 21, 449-456. https://doi.org/10.1038/nm.3850 |
[9] | Kim, S.T., Cristescu, R., Bass, A.J., Kim, K., Odegaard, J.I., Kim, K., et al. (2018) Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nature Medicine, 24, 1449-1458. https://doi.org/10.1038/s41591-018-0101-z |
[10] | Naseem, M., Barzi, A., Brezden-Masley, C., Puccini, A., Berger, M.D., Tokunaga, R., et al. (2018) Outlooks on Epstein-Barr Virus Associated Gastric Cancer. Cancer Treatment Reviews, 66, 15-22. https://doi.org/10.1016/j.ctrv.2018.03.006 |
[11] | Pikuła, A., Kwietniewska, M., Rawicz-Pruszyński, K., et al. (2020) The Importance of Epstein-Barr Virus Infection in the Systemic Treatment of Patients with Gastric Cancer. Seminars in Oncology, 47, 127-137. https://doi.org/10.1053/j.seminoncol.2020.04.001 |
[12] | Murphy, G., Pfeiffer, R., Camargo, M.C. and Rabkin, C.S. (2009) Meta-Analysis Shows That Prevalence of Epstein-Barr Virus-Positive Gastric Cancer Differs Based on Sex and Anatomic Location. Gastroenterology, 137, 824-833. https://doi.org/10.1053/j.gastro.2009.05.001 |
[13] | Song, H. and Kim, K. (2011) Pathology of Epstein-Barr Virus-Associated Gastric Carcinoma and Its Relationship to Prognosis. Gut and Liver, 5, 143-148. https://doi.org/10.5009/gnl.2011.5.2.143 |
[14] | Osumi, H., Kawachi, H., Yoshio, T., Ida, S., Yamamoto, N., Horiuchi, Y., et al. (2019) Epstein-Barr Virus Status Is a Promising Biomarker for Endoscopic Resection in Early Gastric Cancer: Proposal of a Novel Therapeutic Strategy. Journal of Gastroenterology, 54, 774-783. https://doi.org/10.1007/s00535-019-01562-0 |
[15] | Rodriquenz, M.G., Roviello, G., D’Angelo, A., Lavacchi, D., Roviello, F. and Polom, K. (2020) MSI and EBV Positive Gastric Cancer’s Subgroups and Their Link with Novel Immunotherapy. Journal of Clinical Medicine, 9, Article 1427. https://doi.org/10.3390/jcm9051427 |
[16] | Song, H., Srivastava, A., Lee, J., Kim, Y.S., Kim, K., Ki Kang, W., et al. (2010) Host Inflammatory Response Predicts Survival of Patients with Epstein-Barr Virus-Associated Gastric Carcinoma. Gastroenterology, 139, 84-92.E2. https://doi.org/10.1053/j.gastro.2010.04.002 |
[17] | Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., et al. (1984) DNA Sequence and Expression of the B95-8 Epstein-Barr Virus Genome. Nature, 310, 207-211. https://doi.org/10.1038/310207a0 |
[18] | Shinozaki-Ushiku, A., Kunita, A. and Fukayama, M. (2015) Update on Epstein-Barr Virus and Gastric Cancer (Review). International Journal of Oncology, 46, 1421-1434. https://doi.org/10.3892/ijo.2015.2856 |
[19] | Fukayama, M. and Ushiku, T. (2011) Epstein-Barr Virus-Associated Gastric Carcinoma. Pathology-Research and Practice, 207, 529-537. https://doi.org/10.1016/j.prp.2011.07.004 |
[20] | Kenney, S.C. and Mertz, J.E. (2014) Regulation of the Latent-Lytic Switch in Epstein-Barr Virus. Seminars in Cancer Biology, 26, 60-68. https://doi.org/10.1016/j.semcancer.2014.01.002 |
[21] | Sohn, B.H., Hwang, J.-E., Jang, H.-J., et al. (2017) Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by the Cancer Genome Atlas Project. Clinical Cancer Research, 23, 4441-4449. https://doi.org/10.1158/1078-0432.CCR-16-2211 |
[22] | Matsusaka, K., Funata, S., Fukuyo, M., Seto, Y., Aburatani, H., Fukayama, M., et al. (2017) Epstein-Barr Virus Infection Induces Genome-Wide de novo DNA Methylation in Non-Neoplastic Gastric Epithelial Cells. The Journal of Pathology, 242, 391-399. https://doi.org/10.1002/path.4909 |
[23] | Tang, F., Chen, J., Zhang, N., Gong, L., Jiang, Y., Feng, Z., et al. (2018) Expression of CCL21 by EBV-Associated Gastric Carcinoma Cells Protects CD8+CCR7+ T Lymphocytes from Apoptosis via the Mitochondria-Mediated Pathway. Pathology, 50, 613-621. https://doi.org/10.1016/j.pathol.2018.05.004 |
[24] | Hinata, M., Kunita, A., Abe, H., Morishita, Y., Sakuma, K., Yamashita, H., et al. (2020) Exosomes of Epstein-Barr Virus-Associated Gastric Carcinoma Suppress Dendritic Cell Maturation. Microorganisms, 8, Article 1776. https://doi.org/10.3390/microorganisms8111776 |
[25] | Pan, Y., Yu, Y., Wang, X. and Zhang, T. (2020) Tumor-Associated Macrophages in Tumor Immunity. Frontiers in Immunology, 11, Article 583084. https://doi.org/10.3389/fimmu.2020.583084 |
[26] | Veglia, F., Sanseviero, E. and Gabrilovich, D.I. (2021) Myeloid-Derived Suppressor Cells in the Era of Increasing Myeloid Cell Diversity. Nature Reviews Immunology, 21, 485-498. https://doi.org/10.1038/s41577-020-00490-y |
[27] | Lu, S., Wang, L.J., Lombardo, K., et al. (2019) Expression of Indoleamine 2, 3-Dioxygenase 1 (IDO1) and Tryptophanyl-tRNA Synthetase (WARS) in Gastric Cancer Molecular Subtypes. Applied Immunohistochemistry & Molecular Morphology, 28, 360-368. https://doi.org/10.1097/PAI.0000000000000761 |
[28] | Zhang, N., Chen, J., Xiao, L., Tang, F., Zhang, Z., Zhang, Y., et al. (2015) Accumulation Mechanisms of CD4+CD25+FOXP3+ Regulatory T Cells in EBV-Associated Gastric Carcinoma. Scientific Reports, 5, Article No. 18057. https://doi.org/10.1038/srep18057 |
[29] | Lima, Á., Sousa, H., Medeiros, R., Nobre, A. and Machado, M. (2022) PD-L1 Expression in EBV Associated Gastric Cancer: A Systematic Review and Meta-Analysis. Discover Oncology, 13, Article No. 19. https://doi.org/10.1007/s12672-022-00479-0 |
[30] | Keir, M.E., Butte, M.J., Freeman, G.J. and Sharpe, A.H. (2008) PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 26, 677-704. https://doi.org/10.1146/annurev.immunol.26.021607.090331 |
[31] | Carter, L.L., Fouser, L.A., Jussif, J., Fitz, L., Deng, B., Wood, C.R., et al. (2002) PD-1: PD-L Inhibitory Pathway Affects Both CD4+ and CD8+ T Cells and Is Overcome by IL-2. European Journal of Immunology, 32, 634-642. https://doi.org/10.1002/1521-4141(200203)32:3<634::aid-immu634>3.0.co;2-9 |
[32] | Shukla, S.K., Prasad, K.N., Tripathi, A., Singh, A., Saxena, A., Chand Ghoshal, U., et al. (2011) Epstein-Barr Virus DNA Load and Its Association with Helicobacter Pylori Infection in Gastroduodenal Diseases. The Brazilian Journal of Infectious Diseases, 15, 583-590. https://doi.org/10.1016/s1413-8670(11)70255-0 |
[33] | Noh, J.H., Shin, J.Y., Lee, J.H., Park, Y.S., Lee, I., Kim, G.H., et al. (2022) Clinical Significance of Epstein-Barr Virus and Helicobacter pylori Infection in Gastric Carcinoma. Gut and Liver, 17, 69-77. https://doi.org/10.5009/gnl210593 |
[34] | Japanese Gastric Cancer Association (2016) Japanese Gastric Cancer Treatment Guidelines 2014 (ver. 4). Gastric Cancer, 20, 1-19. https://doi.org/10.1007/s10120-016-0622-4 |
[35] | Tada, M., Murakami, A., Karita, M., Yanai, H. and Okita, K. (1993) Endoscopic Resection of Early Gastric Cancer. Endoscopy, 25, 445-450. https://doi.org/10.1055/s-2007-1010365 |
[36] | Gotoda, T., Yanagisawa, A., Sasako, M., Ono, H., Nakanishi, Y., Shimoda, T., et al. (2000) Incidence of Lymph Node Metastasis from Early Gastric Cancer: Estimation with a Large Number of Cases at Two Large Centers. Gastric Cancer, 3, 219-225. https://doi.org/10.1007/pl00011720 |
[37] | Choi, K.K., Bae, J.M., Kim, S.M., Sohn, T.S., Noh, J.H., Lee, J.H., et al. (2016) The Risk of Lymph Node Metastases in 3951 Surgically Resected Mucosal Gastric Cancers: Implications for Endoscopic Resection. Gastrointestinal Endoscopy, 83, 896-901. https://doi.org/10.1016/j.gie.2015.08.051 |
[38] | Xie, T., Liu, Y., Zhang, Z., et al. (2020) Positive Status of Epstein-Barr Virus as a Biomarker for Gastric Cancer Immunotherapy: A Prospective Observational Study. Journal of Immunotherapy, 43, 139-144. https://doi.org/10.1097/CJI.0000000000000316 |
[39] | Caruso, H.G., Heimberger, A.B. and Cooper, L.J.N. (2018) Steering CAR T Cells to Distinguish Friend from Foe. OncoImmunology, 8, e1271857. https://doi.org/10.1080/2162402x.2016.1271857 |
[40] | Smith, J.P., Cao, H., Chen, W., Mahmood, K., Phillips, T., Sutton, L., et al. (2021) Gastrin Vaccine Alone and in Combination with an Immune Checkpoint Antibody Inhibits Growth and Metastases of Gastric Cancer. Frontiers in Oncology, 11, Article 788875. https://doi.org/10.3389/fonc.2021.788875 |
[41] | Nakamura, M., Nishikawa, J., Saito, M., Sakai, K., Sasaki, S., Hashimoto, S., et al. (2016) Decitabine Inhibits Tumor Cell Proliferation and up‐Regulates E‐Cadherin Expression in Epstein-Barr Virus‐Associated Gastric Cancer. Journal of Medical Virology, 89, 508-517. https://doi.org/10.1002/jmv.24634 |
[42] | Vijayaraghavalu, S. and Labhasetwar, V. (2013) Efficacy of Decitabine-Loaded Nanogels in Overcoming Cancer Drug Resistance Is Mediated via Sustained DNA Methyltransferase 1 (DNMT1) Depletion. Cancer Letters, 331, 122-129. https://doi.org/10.1016/j.canlet.2012.12.009 |
[43] | Lee, H.G., Kim, H., Kim, E.J., Park, P., Dong, S.M., et al. (2015) Targeted Therapy for Epstein-Barr Virus-Associated Gastric Carcinoma Using Low-Dose Gemcitabine-Induced Lytic Activation. Oncotarget, 6, 31018-31029. https://doi.org/10.18632/oncotarget.5041 |
[44] | Son, M., Lee, M., Ryu, E., Moon, A., Jeong, C., Jung, Y.W., et al. (2015) Genipin as a Novel Chemical Activator of EBV Lytic Cycle. Journal of Microbiology, 53, 155-165. https://doi.org/10.1007/s12275-015-4672-9 |
[45] | Gong, W., Zhang, L., Yu, H., Yu, Q., Pan, W., Wang, Y., et al. (2018) Dihydroartemisinin Suppresses the Proliferation of Epstein-Barr Virus-Associated Gastric Carcinoma Cells via Downregulation of Latent Membrane Protein 2A. Oncology Letters, 16, 2613-2619. https://doi.org/10.3892/ol.2018.8950 |
[46] | Huh, S., Lee, S., Choi, S.J., Wu, Z., Cho, J., Kim, L., et al. (2019) Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules, 24, Article 3834. https://doi.org/10.3390/molecules24213834 |