|
基于数据挖掘浅析《叶氏女科证治》调经用药规律
|
Abstract:
目的:归纳《叶氏女科证治》调经方药,分析用药规律,为中医临床治疗月经病提供思路。方法:收集《叶氏女科证治》调经条目调经相关方剂,使用Excel表格建立本文原始数据库后进行数据清洗规范整理,并对根据纳排标准最终选纳的163首方剂的药物使用频次、药物功效及药物性、味、归经等数据进行统计;选用数据分析软件SPSS Modeler 18.0及SPSS Statistics 26对纳入方剂方药进行聚类分析及关联结果分析。结果:所录入药物中温性药物最多,占到用药总频次的33.66%;药味以辛味药为首,占到药物总使用频次的29.94%;以归脾(20.18%)及肝经(18.62%)药物最多;根据网络关联图分析得知,《叶氏女科证治》调经方剂核心药物组合是由熟地黄、当归、白芍、川芎组成的妇科第一方——四物汤。结论:《叶氏女科证治》在月经病的治疗中以补益气血、肝脾同治为要。
Objective: To summarize the traditional Chinese medicine prescriptions for regulating menstruation in Diagnosis and Treatment of Ye’s Women’s Health, analyze the medication patterns, and provide ideas for the clinical treatment of menstrual diseases in traditional Chinese medicine. Method: Collect the relevant formulas for regulating menstruation in the Diagnosis and Treatment of Ye’s Women’s Health, use Excel spreadsheets to establish the original database of this article, and clean and organize the data in a standardized manner. Analyze the frequency of drug use, drug efficacy, drug properties, taste, and meridian distribution of 163 selected formulas according to the inclusion and exclusion standards; Cluster analysis and correlation analysis were performed on the included formulas using data analysis software SPSS Modeler 18.0 and SPSS Statistics 26. The results showed that the most commonly recorded drugs were warm, accounting for 33.66% of the total frequency of medication; The taste of the medicine is mainly spicy, accounting for 29.94% of the total frequency of drug use; The most common drugs were Guipi (20.18%) and Ganjing (18.62%); According to the analysis of the network correlation diagram, the core drug combination of the Diagnosis and Treatment of Ye’s Women’s Health regulating meridian formula is the first gynecological formula—Siwu Tang, which is composed of Rehmannia glutinosa, Angelica sinensis, White Peony, and Chuanxiong. Conclusion: In the treatment of menstrual disorders, the Diagnosis and Treatment of Ye’s Women’s Health emphasizes nourishing qi and blood, and treating liver and spleen simultaneously.
[1] | 罗元恺. 中医妇科学[M]. 上海: 上海科学技术出版社, 1986. |
[2] | 张承江. 医学数据仓库与数据挖掘[M]. 北京: 中国中医药出版社, 2008. |
[3] | Feng, Y., Wu, Z., Zhou, X., Zhou, Z. and Fan, W. (2006) Knowledge Discovery in Traditional Chinese Medicine: State of the Art and Perspectives. Artificial Intelligence in Medicine, 38, 219-236. https://doi.org/10.1016/j.artmed.2006.07.005 |
[4] | (清)叶桂撰, 施仁潮, 叶新苗, 段玉新, 刘丹. 女科03叶氏女科证治[M]. 北京: 中国中医药出版社, 2015. |
[5] | 国家药典委员会. 中华人民共和国药典一部(2020年版) [M]. 北京: 中国医药科技出版社, 2020. |
[6] | 国家中医药管理局《中华本草》编委会. 中华本草[M]. 上海: 上海科学技术出版社, 1999. |
[7] | 钟赣生, 杨柏灿. 全国中医药行业高等教育“十四五”规划教材: 中药学[M]. 北京: 中国中医药出版社, 2021. |
[8] | 李明华, 刘全, 刘忠, 等. 数据挖掘中聚类算法的新发展[J]. 计算机应用研究, 2008, 25(1): 13-17. |
[9] | 郭涛, 张代远. 基于关联规则数据挖掘Apriori算法的研究与应用[J]. 计算机技术与发展, 2011, 21(6): 101-103+107. |
[10] | 张博. 基于关联规则的数据挖掘技术在中药方剂配伍中的应用研究[J]. 甘肃联合大学学报(自然科学版), 2011, 25(1): 82-86. |
[11] | 殷丽凤, 李明状. 基于Apriori算法的关联规则分析应用[J]. 电子设计工程, 2023, 31(15): 11-14+19. |
[12] | 王志昊, 苏明月, 李东方, 等. 基于约束的多维Apriori改进算法[J]. 电子技术应用, 2023, 49(10): 100-105. |
[13] | 陆丽娜, 陈亚萍, 魏恒义, 杨麦顺. 挖掘关联规则中Apriori算法的研究[J]. 小型微型计算机系统, 2000, 21(9): 940-943. |
[14] | 虎勤, 柳树英, 赵晓霞, 等. 川芎临证配伍应用探析[J]. 甘肃中医, 2008, 21(10): 37-38. |
[15] | 郑洪新. 中医基础理论[M]. 第10版. 北京: 中国中医药出版社, 2016. |
[16] | 卢莉, 李建平, 薛云珍, 赵红卫, 梁执群. 情绪反应、个性特征与月经失调的关系[J]. 中国心理卫生杂志, 2005, 19(3): 156-158. |
[17] | 马烈光, 张新渝. 黄帝内经素问[M]. 成都: 四川科学技术出版社, 2008. |
[18] | 叶天士. 临证指南医案[M]. 北京: 中国中医药出版社, 1999. |
[19] | 王淑善. 苦辛法在妇科疾患中的应用[J]. 浙江中医杂志, 1998, 33(6): 267-268. |
[20] | (宋)陈自明, 余瀛鳌, 等. 妇人大全良方[M]. 北京: 人民卫生出版社, 1992. |
[21] | 毛文静, 沈劼. 郑氏女科气血观及其在月经病中的应用[J]. 中华中医药杂志, 2020, 35(1): 54-56. |
[22] | 辛国麟, 曹铱晨, 刘亚蓉, 等. 基于数据挖掘分析含熟地黄的中成药配方规律[J]. 光明中医, 2023, 38(21): 4097-4101. |