全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

两种反褶积方法处理效果对比
Comparison of the Processing Effects of Two Deconvolution Methods

DOI: 10.12677/pm.2024.148308, PP. 93-104

Keywords: 地震勘探,脉冲反褶积,稀疏脉冲反褶积,维纳滤波
Seismic Exploration
, Pulse Deconvolution, Sparse Pulse Deconvolution, Wiener Filtering

Full-Text   Cite this paper   Add to My Lib

Abstract:

近几年,伴随着勘探采集工作由浅入深,地质条件变得越来越复杂,地震波反射被减弱、反射波同相轴不连续,地震响应弱,能量也衰减损耗大,导致获取到的地震数据分辨率很低。对于地球物理勘探采集得到的地震数据,提高其分辨率是地震信号处理过程中的关键一步。反褶积处理是提高地震数据时间分辨率最有效的技术方法之一。该方法通过压缩地震子波使得相互干涉地层反射系数分离开,因而更好地识别地层,了解地层信息。传统的反褶积方法主要包括最小二乘反褶积方法和稀疏脉冲反褶积方法。最小二乘反褶积是一种线性反褶积方法。但是地震数据并不都是线性信号,对于非线性信号,最小二乘反褶积方法难以处理。而稀疏脉冲反褶积是一种非线性反褶积方法,将压缩子波的传统反褶积核心转换到反射系数和幅值上面来,拓宽了数据处理思路。稀疏脉冲反褶积加入L1范数稀疏约束项,将反褶积问题转换成非线性目标泛函,从而更好地研究其求解的优化算法。本文首先介绍了反褶积、维纳滤波、最小平方反褶积、脉冲反褶积和稀疏脉冲反褶积,并模拟了反射系数序列,利用最小相位子波合成地震记录,最后用脉冲反褶积与稀疏脉冲反褶积作用于地震数据来观察反褶积方法的作用效果。考查两种反褶积方法的作用效果,挑选出某些道出来观察作用效果,利用均方误差来考察反褶积的效果。
In recent years, with the exploration and acquisition work progressing from shallow to deep, geological conditions have become increasingly complex. Seismic wave reflections have been weakened, the reflection wave phase axis is discontinuous, the seismic response is weak, and the energy attenuation loss is large, resulting in low resolution of obtained seismic data. Improving the resolution of seismic data obtained from geophysical exploration is a crucial step in the seismic signal processing process. Deconvolution processing is one of the most effective techniques for improving the temporal resolution of seismic data. This method compresses seismic wavelets to separate the reflection coefficients of interfering formations, thus better identifying formations and understanding formation information. The traditional deconvolution methods mainly include the least squares deconvolution method and the sparse pulse deconvolution method. Least squares deconvolution is a linear deconvolution method. However, not all earthquake data are nonlinear signals, and for nonlinear signals, the least squares deconvolution method is difficult to process. Sparse pulse deconvolution is a nonlinear deconvolution method that transforms the traditional deconvolution core of compressed wavelets into reflection coefficients and amplitudes, broadening the data processing approach. Sparse pulse deconvolution incorporates L1 norm sparse constraint term to transform the deconvolution problem into a nonlinear objective functional, thereby better studying the optimization algorithm for its solution. This article first introduces deconvolution, Wiener filtering, least squares deconvolution, pulse deconvolution, and sparse pulse deconvolution, and simulates the reflection coefficient sequence. It synthesizes seismic records using the minimum phase wavelet, and finally applies pulse deconvolution and sparse pulse

References

[1]  何樵登. 地震勘探原理和方法[M]. 北京: 地质出版社, 1980.
[2]  陆孟基. 地震勘探原理[M]. 北京: 石油工业出版社, 1993.
[3]  李录明, 李正文. 地震勘探原理、方法和解释[M]. 北京: 地质出版社, 2007.
[4]  Wiener, N. (1964) Extrapolation, Interpolation, and Smoothing of Stationary Time Series. The MIT Press, Cambridge.
[5]  Robinson, E.A. (1967) Predictive Decomposition of Time Series with Application to Seismic Exploration. Geophysics, 32, 418-484.
https://doi.org/10.1190/1.1439873
[6]  Peacock, K. and Treitel, S. (1969) Predictive Deconvolution: Theory and Practice. Geophysics, 34, 155-169.
https://doi.org/10.1190/1.1440003
[7]  Ulrych, T. (1971) Application of Homomorphic Deconvolution to Seismology. Geophysics, 36, 650-660.
https://doi.org/10.1190/1.1440202
[8]  张联海, 王璐, 郑志超, 等. 基于深度卷积神经网络的稀疏反褶积方法[J]. 中国海洋大学学报(自然科学版), 2021, 51(12): 81-88.
[9]  倪文军, 刘少勇, 王丽萍, 等. 基于深度学习的子波整形反褶积方法[J]. 石油地球物理勘探, 2023, 58(6): 1313-1321.
[10]  邵佳, 巫芙蓉, 刘志刚, 等. 联合经验模态分解反褶积与构造导向约束滤波的叠后处理技术及应用[J]. 石油地球物理勘探, 2023, 58(5): 1173-1181.
[11]  卫泽, 潘树林, 程祎, 等. 自适应变分模态分解同态反褶积方法[J]. 石油地球物理勘探, 2023, 58(1): 105-113.
[12]  卢明德. 基于L-1范数的全变分地震信号反褶积优化算法[J]. 地震研究, 2023, 46(1): 107-115.
[13]  杜鑫, 张广智, 刘沛然. 两种反褶积技术应用效果的对比[J]. 石油物探, 2021, 60(S1): 85-89.
[14]  陈思远. 以高分辨率为导向的地震加权叠加算法研究[D]: [博士学位论文]. 北京: 中国石油大学(北京), 2022.
[15]  范昱琪. 稳健的谱模拟反褶积方法研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2021.
[16]  张归前. 基于稀疏编码的地震数据反褶积方法研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2023.
[17]  刘金涛. 稀疏脉冲反褶积影响因素分析和适应性优选[D]: [硕士学位论文]. 北京: 中国石油大学(北京), 2021.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133