全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Advancements in Polymer Science: Synthesis, Characterization, and Biomedical Applications of Homopolymers and Copolymers

DOI: 10.4236/ojpchem.2024.143008, PP. 167-198

Keywords: Homopolymer, Copolymer, Poly(2-hydroxyethyl methacrylate) (pHEMA) Polystyrene, Free Radical Polymerization, Atomic Force Microscopy, Solvent Polarity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.

References

[1]  Sebastian, K., Michael, M. and Oskar, N. (2017) Polymer Chemistry. Springer, 1-584.
[2]  Jenkins, A.D., Kratochvíl, P., Stepto, R.F.T. and Suter, U.W. (1996) Glossary of Basic Terms in Polymer Science (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68, 2287-2311.
https://doi.org/10.1351/pac199668122287
[3]  Li, D., Li, N. and Hutchinson, R.A. (2006) High-Temperature Free Radical Copolymerization of Styrene and Butyl Methacrylate with Depropagation and Penultimate Kinetic Effects. Macromolecules, 39, 4366-4373.
https://doi.org/10.1021/ma060411l
[4]  Ahmad, N.M., Heatley, F. and Lovell, P.A. (1998) Chain Transfer to Polymer in Free-Radical Solution Polymerization of n-Butyl Acrylate Studied by NMR Spectroscopy. Macromolecules, 31, 2822-2827.
https://doi.org/10.1021/ma971283r
[5]  Fernández-García, M., Torrado, M.F., Martínez, G., Sánchez-Chaves, M. and Madruga, E.L. (2000) Free Radical Copolymerization of 2-Hydroxyethyl Methacrylate with Butyl Methacrylate: Determination of Monomer Reactivity Ratios and Glass Transition Temperatures. Polymer, 41, 8001-8008.
https://doi.org/10.1016/s0032-3861(00)00167-1
[6]  Schöttner, S., Hossain, R., Rüttiger, C. and Gallei, M. (2017) Ferrocene-Modified Block Copolymers for the Preparation of Smart Porous Membranes. Polymers, 9, Article No. 491.
https://doi.org/10.3390/polym9100491
[7]  Schöttner, S., Schaffrath, H. and Gallei, M. (2016) Poly(2-hydroxyethyl Methacrylate)-Based Amphiphilic Block Copolymers for High Water Flux Membranes and Ceramic Templates. Macromolecules, 49, 7286-7295.
https://doi.org/10.1021/acs.macromol.6b01803
[8]  Javakhishvili, I., Røn, T., Jankova, K., Hvilsted, S. and Lee, S. (2014) Synthesis, Characterization, and Aqueous Lubricating Properties of Amphiphilic Graft Copolymers Comprising 2-Methoxyethyl Acrylate. Macromolecules, 47, 2019-2029.
https://doi.org/10.1021/ma4024747
[9]  Yoshida, H., Itsuno, S. and Ito, K. (1995) Syntheses and Interfacial Characterization of Graft Copolymers from Styrene and 2-Hydroxyethyl Methacrylate That Comprise Either Trunks or Branches. Canadian Journal of Chemistry, 73, 1757-1764.
https://doi.org/10.1139/v95-216
[10]  Fujioka, M., Ma, G., Du, Y., Ogino, K., Nagai, M. and Omi, S. (2003) Synthesis of Functional Graft Copolymers by Solution Copolymerization and Their Evaluation as Dispersants in Nonaqueous Phase Dispersion Polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 41, 1788-1798.
https://doi.org/10.1002/pola.10726
[11]  Schöttner, S., Brodrecht, M., Uhlein, E., Dietz, C., Breitzke, H., Tietze, A.A., et al. (2019) Amine-Containing Block Copolymers for the Bottom-Up Preparation of Functional Porous Membranes. Macromolecules, 52, 2631-2641.
https://doi.org/10.1021/acs.macromol.8b02758
[12]  Chen, S. and Hu, A. (2015) Recent Advances of the Bergman Cyclization in Polymer Science. Science China Chemistry, 58, 1710-1723.
https://doi.org/10.1007/s11426-015-5460-4
[13]  Kamtekar, K.T., Dahms, K., Batsanov, A.S., Jankus, V., Vaughan, H.L., Monkman, A.P., et al. (2011) Synthesis and Characterization of Fluorene-Based Oligomers and Polymers Incorporating n-arylphenothiazine-s,s-dioxide Units. Journal of Polymer Science Part A: Polymer Chemistry, 49, 1129-1137.
https://doi.org/10.1002/pola.24527
[14]  Koyuncu, S., Zafer, C., Koyuncu, F.B., Aydin, B., Can, M., Sefer, E., et al. (2009) A New Donor-Acceptor Double-Cable Carbazole Polymer with Perylene Bisimide Pendant Group: Synthesis, Electrochemical, and Photovoltaic Properties. Journal of Polymer Science Part A: Polymer Chemistry, 47, 6280-6291.
https://doi.org/10.1002/pola.23671
[15]  Shi, Y., Guo, H., Qin, M., Wang, Y., Zhao, J., Sun, H., et al. (2018) Imide-Functionalized Thiazole-Based Polymer Semiconductors: Synthesis, Structure-Property Correlations, Charge Carrier Polarity, and Thin-Film Transistor Performance. Chemistry of Materials, 30, 7988-8001.
https://doi.org/10.1021/acs.chemmater.8b03670
[16]  R. Murad, A., Iraqi, A., Aziz, S.B., Hi, H., N. Abdullah, S., Brza, M.A., et al. (2020) Influence of Fluorine Substitution on the Optical, Thermal, Electrochemical and Structural Properties of Carbazole-Benzothiadiazole Dicarboxylic Imide Alternate Copolymers. Polymers, 12, Article No. 2910.
https://doi.org/10.3390/polym12122910
[17]  Liu, T., Huo, L., Chandrabose, S., Chen, K., Han, G., Qi, F., et al. (2018) Optimized Fibril Network Morphology by Precise Side-Chain Engineering to Achieve High-Performance Bulk-Heterojunction Organic Solar Cells. Advanced Materials, 30, Article ID: 1707353.
https://doi.org/10.1002/adma.201707353
[18]  Cunningham, M.F. and Jessop, P.G. (2022) Carbon Dioxide Switchable Polymers—Recent Developments and Emerging Applications. Macromolecular Reaction Engineering, 16, Article ID: 2200031.
https://doi.org/10.1002/mren.202200031
[19]  Ren, Z., Lyu, Y., Song, X., Liu, Y., Jiang, Z., Lin, R., et al. (2019) Dual-Ionically Bound Single-Site Rhodium on Porous Ionic Polymer Rivals Commercial Methanol Carbonylation Catalysts. Advanced Materials, 31, Article ID: 1904976.
https://doi.org/10.1002/adma.201904976
[20]  Zhou, H., Yang, L. and You, W. (2012) Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 45, 607-632.
https://doi.org/10.1021/ma201648t
[21]  Liu, H., Hu, Z. and Ji, X. (2024) Characterization by Gel Permeation Chromatography of the Molecular Weight of Supramolecular Polymers Generated by Forming Polyrotaxanes through the Introduction of External Stoppers. ChemistryA European Journal, 30, e202400099.
https://doi.org/10.1002/chem.202400099
[22]  Garcia, A. and Blum, S.A. (2022) Polymer Molecular Weight Determination via Fluorescence Lifetime. Journal of the American Chemical Society, 144, 22416-22420.
https://doi.org/10.1021/jacs.2c10036
[23]  Mohapatra, S., Samanta, S., Kothari, K., Mistry, P. and Suryanarayanan, R. (2017) Effect of Polymer Molecular Weight on the Crystallization Behavior of Indomethacin Amorphous Solid Dispersions. Crystal Growth & Design, 17, 3142-3150.
https://doi.org/10.1021/acs.cgd.7b00096
[24]  Kestur, U.S., Lee, H., Santiago, D., Rinaldi, C., Won, Y. and Taylor, L.S. (2010) Effects of the Molecular Weight and Concentration of Polymer Additives, and Temperature on the Melt Crystallization Kinetics of a Small Drug Molecule. Crystal Growth & Design, 10, 3585-3595.
https://doi.org/10.1021/cg1004853
[25]  Krenceski, M.A. and Johnson, J.F. (1989) Shear, Tack, and Peel of Polyisobutylene: Effect of Molecular Weight and Molecular Weight Distribution. Polymer Engineering & Science, 29, 36-43.
https://doi.org/10.1002/pen.760290108
[26]  Kim, I., Kim, Y. and Kang, S.M. (2022) Effect of Molecular Weights on Metal-Mediated Grafting of Sulfobetaine Polymers onto Solid Surfaces for Non-Biofouling Applications. Macromolecular Bioscience, 22, Article ID: 2200200.
https://doi.org/10.1002/mabi.202200200
[27]  Zhang, X., Pan, F., Guan, W., Li, D., Li, X. and Guo, S. (2011) A Novel Method of Optimizing the Moelcular Weight of Polymer Flooding. SPE Enhanced Oil Recovery Conference, Kuala Lumpur, July 2011, SPE-144252-MS.
https://doi.org/10.2118/144252-ms
[28]  Huang, B., Zhang, W., Xu, R., Shi, Z., Fu, C., Wang, Y., et al. (2017) A Study on the Matching Relationship of Polymer Molecular Weight and Reservoir Permeability in ASP Flooding for Duanxi Reservoirs in Daqing Oil Field. Energies, 10, Article No. 951.
https://doi.org/10.3390/en10070951
[29]  Liang, K., Dossi, M., Moscatelli, D. and Hutchinson, R.A. (2009) An Investigation of Free-Radical Copolymerization Propagation Kinetics of Styrene and 2-Hydroxyethyl Methacrylate. Macromolecules, 42, 7736-7744.
https://doi.org/10.1021/ma901355u
[30]  Fernández-García, M., Torrado, M.F., Martínez, G., Sánchez-Chaves, M. and Madruga, E.L. (2000) Free Radical Copolymerization of 2-Hydroxyethyl Methacrylate with Butyl Methacrylate: Determination of Monomer Reactivity Ratios and Glass Transition Temperatures. Polymer, 41, 8001-8008.
https://doi.org/10.1016/s0032-3861(00)00167-1
[31]  Hill, D., et al. (2000) Copolymer Hydrogels of 2-Hydroxyethyl Methacrylate with N-Butyl Methacrylate and Cyclohexyl Methacrylate: Synthesis, Characterization and Uptake of Water. Polymer, 41, 1287-1296.
https://doi.org/10.1016/s0032-3861(99)00279-7
[32]  Beers, K.L., Gaynor, S.G., Matyjaszewski, K., Sheiko, S.S. and Möller, M. (1998) The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization. Macromolecules, 31, 9413-9415.
https://doi.org/10.1021/ma981402i
[33]  Allegrezza, M.L. and Konkolewicz, D. (2021) PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Letters, 10, 433-446.
https://doi.org/10.1021/acsmacrolett.1c00046
[34]  Hartlieb, M. (2021) Photo-Iniferter RAFT Polymerization. Macromolecular Rapid Communications, 43, Article ID: 2100514.
https://doi.org/10.1002/marc.202100514
[35]  Kandelhard, F., Pashayev, E., Schymura, J. and Georgopanos, P. (2023) Kinetic Modeling of the Synthesis of Poly(4-Vinylpyridine) Macro-Reversible Addition-Fragmentation Chain Transfer Agents for the Preparation of Block Copolymers. Industrial & Engineering Chemistry Research, 62, 8696-8708.
https://doi.org/10.1021/acs.iecr.3c00607
[36]  Keddie, D.J. (2014) A Guide to the Synthesis of Block Copolymers Using Reversible-Addition Fragmentation Chain Transfer (RAFT) Polymerization. Chemical Society Reviews, 43, 496-505.
https://doi.org/10.1039/c3cs60290g
[37]  Khani, M.M., Abbas, Z.M. and Benicewicz, B.C. (2017) Well-Defined Polyisoprene-Grafted Silica Nanoparticles via the RAFT Process. Journal of Polymer Science Part A: Polymer Chemistry, 55, 1493-1501.
https://doi.org/10.1002/pola.28514
[38]  Liu, D., Cai, W., Zhang, L., Boyer, C. and Tan, J. (2020) Efficient Photoinitiated Polymerization-Induced Self-Assembly with Oxygen Tolerance through Dual-Wavelength Type I Photoinitiation and Photoinduced Deoxygenation. Macromolecules, 53, 1212-1223.
https://doi.org/10.1021/acs.macromol.9b02710
[39]  Moraes, J., Ohno, K., Gody, G., Maschmeyer, T. and Perrier, S. (2013) The Synthesis of Well-Defined Poly(vinylbenzyl Chloride)-Grafted Nanoparticles via RAFT Polymerization. Beilstein Journal of Organic Chemistry, 9, 1226-1234.
https://doi.org/10.3762/bjoc.9.139
[40]  Ohno, K., Ma, Y., Huang, Y., Mori, C., Yahata, Y., Tsujii, Y., et al. (2011) Surface-initiated Reversible Addition-fragmentation Chain Transfer (RAFT) Polymerization from Fine Particles Functionalized with Trithiocarbonates. Macromolecules, 44, 8944-8953.
https://doi.org/10.1021/ma202105y
[41]  Park, M., Kim, K., Mohanty, A.K., Cho, H.Y., Lee, H., Kang, Y., et al. (2020) Redox-Initiated Reversible Addition-fragmentation Chain Transfer (RAFT) Miniemulsion Polymerization of Styrene Using Ppegma-Based Macro-Raft Agent. Macromolecular Rapid Communications, 41, Article ID: 2000399.
https://doi.org/10.1002/marc.202000399
[42]  Rong, L., Caldona, E.B. and Advincula, R.C. (2022) Pet-Raft Polymerization under Flow Chemistry and Surface-Initiated Reactions. Polymer International, 72, 145-157.
https://doi.org/10.1002/pi.6475
[43]  Roy, D., Guthrie, J.T. and Perrier, S. (2005) Graft Polymerization: Grafting Poly(styrene) from Cellulose via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 38, 10363-10372.
https://doi.org/10.1021/ma0515026
[44]  Lodge, T.P. and Hiemenz, P.C. (2020) Polymer Chemistry. 3rd Edition, CRC Press.
[45]  Hsieh, H. and Quirk, R.P. (1996) Anionic Polymerization: Principles and Practical Applications. CRC Press.
[46]  Quirk, R.P. and Lee, B. (1992) Experimental Criteria for Living Polymerizations. Polymer International, 27, 359-367.
https://doi.org/10.1002/pi.4990270412
[47]  Sudo, A. (2015) Anionic Ring-Opening Polymerization. In: Kobayashi, S. and Müllen, K., Eds., Encyclopedia of Polymeric Nanomaterials, Springer, 33-43.
https://doi.org/10.1007/978-3-642-29648-2_172
[48]  Wu, L., Rondon, B., Dym, S., Wang, W., Chen, K. and Niu, J. (2023) Regulating Cationic Polymerization: From Structural Control to Life Cycle Management. Progress in Polymer Science, 145, Article ID: 101736.
https://doi.org/10.1016/j.progpolymsci.2023.101736
[49]  Sawamoto, M. (1991) Modern Cationic Vinyl Polymerization. Progress in Polymer Science, 16, 111-172.
https://doi.org/10.1016/0079-6700(91)90008-9
[50]  Uchiyama, M., Satoh, K. and Kamigaito, M. (2022) Cationic RAFT and DT Polymerization. Progress in Polymer Science, 124, Article ID: 101485.
https://doi.org/10.1016/j.progpolymsci.2021.101485
[51]  Yagci, Y., Jockusch, S. and Turro, N.J. (2010) Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules, 43, 6245-6260.
https://doi.org/10.1021/ma1007545
[52]  Liang, K. and Hutchinson, R.A. (2010) Solvent Effects on Free-Radical Copolymerization Propagation Kinetics of Styrene and Methacrylates. Macromolecules, 43, 6311-6320.
https://doi.org/10.1021/ma1009963
[53]  Kamachi, M., Liaw, D.J. and Nozakura, S. (1981) Solvent Effect on Radical Polymerization of Methyl Methacrylate. Polymer Journal, 13, 41-50.
https://doi.org/10.1295/polymj.13.41
[54]  Furuncuoğlu Özaltın, T., Dereli, B., Karahan, Ö., Salman, S. and Aviyente, V. (2014) Solvent Effects on Free-Radical Copolymerization of Styrene and 2-Hydroxyethyl Methacrylate: A DFT Study. New Journal of Chemistry, 38, 170-178.
https://doi.org/10.1039/c3nj00820g
[55]  Fantin, M., Tognella, E., Antonello, A., Lorandi, F., Calore, E., Macior, A., et al. (2024) Effects of Solvent and Monomer on the Kinetics of Radical Generation in Atom Transfer Radical Polymerization. ChemElectroChem, 11, e202300662.
https://doi.org/10.1002/celc.202300662
[56]  Barb, W.G. (1953) Effect of Nonterminal Monomer Units on the Reactivity of Polymeric Free Radicals. Journal of Polymer Science, 11, 117-126.
https://doi.org/10.1002/pol.1953.120110202
[57]  Idowu, L.A. and Hutchinson, R.A. (2019) Solvent Effects on Radical Copolymerization Kinetics of 2-Hydroxyethyl Methacrylate and Butyl Methacrylate. Polymers, 11, Article No. 487.
https://doi.org/10.3390/polym11030487
[58]  Furuncuoğlu Özaltın, T., Dereli, B., Karahan, Ö., Salman, S. and Aviyente, V. (2014) Solvent Effects on Free-Radical Copolymerization of Styrene and 2-Hydroxyethyl Methacrylate: A DFT Study. New Journal of Chemistry, 38, 170-178.
https://doi.org/10.1039/c3nj00820g
[59]  Schier, J.E.S. and Hutchinson, R.A. (2016) The Influence of Hydrogen Bonding on Radical Chain-Growth Parameters for Butyl Methacrylate/2-Hydroxyethyl Acrylate Solution Copolymerization. Polymer Chemistry, 7, 4567-4574.
https://doi.org/10.1039/c6py00834h
[60]  Rooney, T.R. and Hutchinson, R.A. (2018) Monomer Structure and Solvent Effects on Copolymer Composition in (Meth)acrylate Radical Copolymerization. Industrial & Engineering Chemistry Research, 57, 5215-5227.
https://doi.org/10.1021/acs.iecr.8b00451
[61]  Schier, J.E.S., Cohen-Sacal, D. and Hutchinson, R.A. (2017) Hydrogen Bonding in Radical Solution Copolymerization Kinetics of Acrylates and Methacrylates: A Comparison of Hydroxy-and Methoxy-Functionality. Polymer Chemistry, 8, 1943-1952.
https://doi.org/10.1039/c7py00185a
[62]  Zare, M., Bigham, A., Zare, M., Luo, H., Rezvani Ghomi, E. and Ramakrishna, S. (2021) pHEMA: An Overview for Biomedical Applications. International Journal of Molecular Sciences, 22, Article No. 6376.
https://doi.org/10.3390/ijms22126376
[63]  Barui, A. (2018) Synthetic Polymeric Gel. In: Pal, K. and Banerjee, I., Eds., Polymeric Gels, Elsevier, 55-90.
https://doi.org/10.1016/b978-0-08-102179-8.00003-x
[64]  Hicks, C.R., Morris, I.T., Vijayasekaran, S., Fallon, M.J., McAllister, J., Clayton, A.B., et al. (1999) Correlation of Histological Findings with Gadolinium Enhanced MRI Scans during Healing of a PHEMA Orbital Implant in Rabbits. British Journal of Ophthalmology, 83, 616-621.
https://doi.org/10.1136/bjo.83.5.616
[65]  Wang, Y., Ouyang, H., Xie, Y., Jiang, Y., Zhao, L., Peng, W., et al. (2022) Mechanically Robust, Biocompatible, and Durable PHEMA-Based Hydrogels Enabled by the Synergic Effect of Strong Intermolecular Interaction and Suppressed Phase Separation. Polymer, 254, Article ID: 125083.
https://doi.org/10.1016/j.polymer.2022.125083
[66]  Weaver, J.V.M., Bannister, I., Robinson, K.L., Bories-Azeau, X., Armes, S.P., Smallridge, M., et al. (2004) Stimulus-Responsive Water-Soluble Polymers Based on 2-Hydroxyethyl Methacrylate. Macromolecules, 37, 2395-2403.
https://doi.org/10.1021/ma0356358
[67]  Braunecker, W.A. and Matyjaszewski, K. (2007) Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Progress in Polymer Science, 32, 93-146.
https://doi.org/10.1016/j.progpolymsci.2006.11.002
[68]  Stenzel, M.H., Barner-Kowollik, C., Davis, T.P. and Dalton, H.M. (2004) Amphiphilic Block Copolymers Based on Poly(2-acryloyloxyethyl Phosphorylcholine) Prepared via RAFT Polymerisation as Biocompatible Nanocontainers. Macromolecular Bioscience, 4, 445-453.
https://doi.org/10.1002/mabi.200300113
[69]  Xia, J. and Matyjaszewski, K. (1999) Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes. Macromolecules, 32, 2434-2437.
https://doi.org/10.1021/ma981694n
[70]  Tsarevsky, N.V. and Matyjaszewski, K. (2007) “Green” Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials. Chemical Reviews, 107, 2270-2299.
https://doi.org/10.1021/cr050947p
[71]  Matyjaszewski, K., Jakubowski, W., Min, K., Tang, W., Huang, J., Braunecker, W.A., et al. (2006) Diminishing Catalyst Concentration in Atom Transfer Radical Polymerization with Reducing Agents. Proceedings of the National Academy of Sciences, 103, 15309-15314.
https://doi.org/10.1073/pnas.0602675103
[72]  Chen, H., Yang, L., Liang, Y., Hao, Z. and Lu, Z. (2009) ARGET ATRP of Acrylonitrile Catalyzed by FeCl3/Isophthalic Acid in the Presence of Air. Journal of Polymer Science Part A: Polymer Chemistry, 47, 3202-3207.
https://doi.org/10.1002/pola.23406
[73]  Paterson, S.M., Brown, D.H., Chirila, T.V., Keen, I., Whittaker, A.K. and Baker, M.V. (2010) The Synthesis of Water-soluble PHEMA via ARGET ATRP in Protic Media. Journal of Polymer Science Part A: Polymer Chemistry, 48, 4084-4092.
https://doi.org/10.1002/pola.24194
[74]  Koerner, G.R., Hsuan, Y.G. and Koerner, R.M. (2007) The Durability of Geosynthetics. In: Sarsby, R.W., Ed., Geosynthetics in Civil Engineering, Elsevier, 36-65.
https://doi.org/10.1533/9781845692490.1.36
[75]  Sastri, V.R. (2010) Chapter 6. Commodity Thermoplastics: Polyvinyl Chloride, Polyolefins, and Polystyrene. In: Sastri, V.R., Ed., Plastics in Medical Devices, Elsevier, 73-119.
[76]  Ghobashy, M.M., Younis, S.A., Elhady, M.A. and Serp, P. (2018) Radiation Induced In-Situ Cationic Polymerization of Polystyrene Organogel for Selective Absorption of Cholorophenols from Petrochemical Wastewater. Journal of Environmental Management, 210, 307-315.
https://doi.org/10.1016/j.jenvman.2018.01.018
[77]  Alhilfi, T., Chambon, P. and Rannard, S.P. (2020) Architectural Control of Polystyrene Physical Properties Using Branched Anionic Polymerization Initiated at Ambient Temperature. Journal of Polymer Science, 58, 1426-1438.
https://doi.org/10.1002/pol.20200143
[78]  Xu, J., Jung, K., Atme, A., Shanmugam, S. and Boyer, C. (2014) A Robust and Versatile Photoinduced Living Polymerization of Conjugated and Unconjugated Monomers and Its Oxygen Tolerance. Journal of the American Chemical Society, 136, 5508-5519.
https://doi.org/10.1021/ja501745g
[79]  Huang, B., Zhang, W., Xu, R., Shi, Z., Fu, C., Wang, Y., et al. (2017) A Study on the Matching Relationship of Polymer Molecular Weight and Reservoir Permeability in ASP Flooding for Duanxi Reservoirs in Daqing Oil Field. Energies, 10, Article No. 951.
https://doi.org/10.3390/en10070951
[80]  Reyhani, A., McKenzie, T.G., Fu, Q. and Qiao, G.G. (2019) Fenton-Chemistry-Mediated Radical Polymerization. Macromolecular Rapid Communications, 40, Article ID: 1900220.
https://doi.org/10.1002/marc.201900220
[81]  Wang, X., Han, T., Lam, J.W.Y. and Tang, B.Z. (2021) In Situ Generation of Heterocyclic Polymers by Triple-Bond Based Polymerizations. Macromolecular Rapid Communications, 42, Article ID: 2100524.
https://doi.org/10.1002/marc.202100524
[82]  Yang, T., Qin, Y. and Dong, J. (2018) Nonconjugated α,ω-Diolefin/Propylene Copolymerization to Long Chain-Branched Polypropylene by Ziegler-Natta Catalyst: Overcoming Steric Hindrance by Introducing an Extra Electronic Pulling Effect. Macromolecules, 51, 9234-9249.
https://doi.org/10.1021/acs.macromol.8b01958
[83]  Lee, S., Borrelli, D.C., Jo, W.J., Reed, A.S. and Gleason, K.K. (2018) Nanostructured Unsubstituted Polythiophene Films Deposited Using Oxidative Chemical Vapor Deposition: Hopping Conduction and Thermal Stability. Advanced Materials Interfaces, 5, Article ID: 1701513.
https://doi.org/10.1002/admi.201701513
[84]  Kedzior, S.A., Kiriakou, M., Niinivaara, E., Dubé, M.A., Fraschini, C., Berry, R.M., et al. (2018) Incorporating Cellulose Nanocrystals into the Core of Polymer Latex Particles via Polymer Grafting. ACS Macro Letters, 7, 990-996.
https://doi.org/10.1021/acsmacrolett.8b00334
[85]  Ganguly, S., Kanovsky, N., Das, P., Gedanken, A. and Margel, S. (2021) Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Non-Contact Heating Applications. Advanced Materials Interfaces, 8, Article ID: 2101255.
https://doi.org/10.1002/admi.202101255
[86]  Yoda, S., Ohara, M., Takebayashi, Y., Sue, K., Hakuta, Y., Furuya, T., et al. (2013) A Porous Polymer-Silica Composite with a “Vespula-Like” Structure for Thermal Insulating Materials Prepared via High Pressure Phase Control. Journal of Materials Chemistry A, 1, 9620-9623.
https://doi.org/10.1039/c3ta11772c
[87]  Yu, F., Feng, H., Leng, J., Xue, H., Zhong, Z., Yan, Z., et al. (2022) Self-Assembled Graphene Oxide Microcapsules in Pickering Emulsions for Photo-Responsive Self-Healing Epoxy Coatings. Journal of Applied Polymer Science, 139, e52685.
https://doi.org/10.1002/app.52685
[88]  Zheng, Q., Zhang, Y., Montazerian, M., Gulbiten, O., Mauro, J.C., Zanotto, E.D., et al. (2019) Understanding Glass through Differential Scanning Calorimetry. Chemical Reviews, 119, 7848-7939.
https://doi.org/10.1021/acs.chemrev.8b00510
[89]  Ishikawa, D., Hikima, Y. and Ozaki, Y. (2021) Near-Infrared Spectroscopy and Imaging of Polymers. In: Ozaki, Y. and Sato, H., Eds., Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications, Wiley, 125-164.
[90]  Müller-Pabel, M., Rodríguez Agudo, J.A. and Gude, M. (2022) Measuring and Understanding Cure-Dependent Viscoelastic Properties of Epoxy Resin: A Review. Polymer Testing, 114, Article ID: 107701.
https://doi.org/10.1016/j.polymertesting.2022.107701
[91]  Takeoka, Y., Liu, S. and Asai, F. (2020) Improvement of Mechanical Properties of Elastic Materials by Chemical Methods. Science and Technology of Advanced Materials, 21, 817-832.
https://doi.org/10.1080/14686996.2020.1849931
[92]  Mohamed, M.A., Jaafar, J., Ismail, A.F., Othman, M.H.D. and Rahman, M.A. (2017) Fourier Transform Infrared (FTIR) Spectroscopy. In: Hilal, N., et al., Eds., Membrane Characterization, Elsevier, 3-29.
https://doi.org/10.1016/b978-0-444-63776-5.00001-2
[93]  Chartoff, R.P. and Sircar, A.K. (2004) Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Ltd.
[94]  Spiess, H.W. (2017) 50th Anniversary Perspective: The Importance of NMR Spectroscopy to Macromolecular Science. Macromolecules, 50, 1761-1777.
https://doi.org/10.1021/acs.macromol.6b02736
[95]  Lachaize, V., et al. (2015) Atomic Force Microscopy: An Innovative Technology to Explore Cardiomyocyte Cell Surface in Cardiac Physio/Pathophysiology. Letters in Applied NanoBioScience, 4, 321-324.
[96]  Horňáková, V., Přibyl, J. and Skládal, P. (2016) Study of DNA Immobilization on Mica Surface by Atomic Force Microscopy. Monatshefte für ChemieChemical Monthly, 147, 865-871.
https://doi.org/10.1007/s00706-016-1695-9
[97]  Kabanov, D., Klimovic, S., Rotrekl, V., Pesl, M. and Pribyl, J. (2022) Atomic Force Spectroscopy Is a Promising Tool to Study Contractile Properties of Cardiac Cells. Micron, 155, Article ID: 103199.
https://doi.org/10.1016/j.micron.2021.103199
[98]  Schick, C. (2009) Differential Scanning Calorimetry (DSC) of Semicrystalline Polymers. Analytical and Bioanalytical Chemistry, 395, 1589-1611.
https://doi.org/10.1007/s00216-009-3169-y
[99]  Lynch, J.M., Corniuk, R.N., Brignac, K.C., Jung, M.R., Sellona, K., Marchiani, J., et al. (2024) Differential Scanning Calorimetry (DSC): An Important Tool for Polymer Identification and Characterization of Plastic Marine Debris. Environmental Pollution, 346, Article ID: 123607.
https://doi.org/10.1016/j.envpol.2024.123607
[100]  Apostolidis, P., Elwardany, M., Andriescu, A., Mensching, D.J. and Youtcheff, J. (2023) Study of Phase Behavior of Epoxy Asphalt Binders Using Differential Scanning Calorimetry. Construction and Building Materials, 369, Article ID: 130566.
https://doi.org/10.1016/j.conbuildmat.2023.130566
[101]  Apostolidis, P., Elwardany, M., Porot, L., Vansteenkiste, S. and Chailleux, E. (2021) Glass Transitions in Bituminous Binders. Materials and Structures, 54, Article No. 132.
https://doi.org/10.1617/s11527-021-01726-6
[102]  Moura, D., Rohringer, S., Ferreira, H.P., Pereira, A.T., Barrias, C.C., Magalhães, F.D., et al. (2024) Long-Term in Vivo Degradation and Biocompatibility of Degradable pHEMA Hydrogels Containing Graphene Oxide. Acta Biomaterialia, 173, 351-364.
https://doi.org/10.1016/j.actbio.2023.11.012
[103]  Pani, B.S.U.L. and Chandrasekaran, N. (2024) Adsorption of Clarithromycin on Polystyrene Nanoplastics Surface and Its Combined Adverse Effect on Serum Albumin. Colloids and Surfaces B: Biointerfaces, 234, Article ID: 113673.
https://doi.org/10.1016/j.colsurfb.2023.113673

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133