全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

POT-SGEL模型在金融极端尾部风险中的应用
Application of the POT-SGEL Model to Financial Extreme Tail Risk

DOI: 10.12677/sa.2024.134128, PP. 1265-1273

Keywords: 尖峰厚尾,广义误差分布,风险度量,极端值模型
Leptokurtosis
, Generalized Error Distribution, Risk Measures, Extreme Value Models

Full-Text   Cite this paper   Add to My Lib

Abstract:

在金融市场中,极端事件往往会对投资者造成较大的损失,建立有效的极端值模型可以降低极端风险对投资者产生的影响。本文考虑了极端尾部风险的情况,基于极值理论和SGEL分布,将POT模型中的超额分布用SGEL分布近似,提出了POT-SGEL模型;应用POT-SGEL模型来估计标普100指数日对数收益率的极端VaR值;通过与POT模型进行对比发现,POT-SGEL模型能够对极端VaR值进行估计,且在一定程度上比POT模型更优。
In financial markets, extreme events tend to cause large losses to investors, and modelling effective extremes can reduce the impact of extreme risks on investors. This article considers the case of extreme tail risk, and based on the extreme value theory and SGEL distribution, the excess distribution in the POT model is approximated by the SGEL distribution, and the POT-SGEL model is proposed; the POT-SGEL model is applied to estimate the extreme VaR values of the daily log returns of the S&P 100 index; through comparison with the POT model, it is found that the POT-SGEL model is able to estimate the extreme VaR values and is to some extent better than the POT model.

References

[1]  Lauridsen, S. (2000) Estimation of Value at Risk by Extreme Value Methods. Extremes, 3, 107-144.
https://doi.org/10.1023/a:1009979331996
[2]  Araújo Santos, P. and Fraga Alves, M.I. (2013) Forecasting Value-At-Risk with a Duration-Based POT Method. Mathematics and Computers in Simulation, 94, 295-309.
https://doi.org/10.1016/j.matcom.2012.07.016
[3]  Yi, Y., Feng, X. and Huang, Z. (2014) Estimation of Extreme Value-At-Risk: An EVT Approach for Quantile GARCH Model. Economics Letters, 124, 378-381.
https://doi.org/10.1016/j.econlet.2014.06.028
[4]  Jiang, J.J. and Ye, B. (2014) Value-at-Risk Estimation of Carbon Spot Market Based on the Combined GARCH-EVT-VaR Model. Advanced Materials Research, 1065, 3250-3253.
https://doi.org/10.4028/www.scientific.net/amr.1065-1069.3250
[5]  邵腾伟, 冉光和. 基于POT-GPD损失分布的农业自然灾害VAR估算[J]. 统计研究, 2011, 28(7): 79-83.
[6]  Pickands III, J. (1975) Statistical Inference Using Extreme Order Statistics. The Annals of Statistics, 3, 119-131.
[7]  Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983) Extremes and Related Properties of Random Sequences and Processes. Springer.
[8]  McNeil, A.J. and Frey, R. (2000) Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach. Journal of Empirical Finance, 7, 271-300.
https://doi.org/10.1016/s0927-5398(00)00012-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133