|
理想磁流体方程的MUSCL-型熵相容格式研究
|
Abstract:
针对磁流体动力学方程,本文提出了一种基于MUSCL-Hancock方法求解MHD方程的熵相容格式(EC-MHM格式),获得了一种求解理想磁流体动力学方程的高分辨率熵相容格式。该格式在解的光滑区域具有高精度;在解的间断区域可以合理地控制耗散,使抹平现象得到改善,还可有效避免非物理现象的产生。文中还证明了熵相容格式的收敛性。采用熵稳定格式、熵相容格式和新的高分辨率熵相容格式对理想磁流体动力学方程进行数值模拟。结果表明:新格式能准确地捕捉解的结构,且具有无振荡、高分辨、鲁棒等特性。
Focusing on the idea magnetohydrodynamic (MHD) equations, this paper presents an entropy-consistent scheme based on the MUSCL-Hancock method for solving MHD equations, termed the Entropy Consistent MUSCL-Hancock (EC-MHM) scheme, and thus achieving a high-resolution entropy-consistent formulation for solving ideal MHD equations. This scheme exhibits high accuracy in smooth regions of the solution and effectively controls dissipation in discontinuous zones, leading to an improvement in the smearing phenomenon and efficiently preventing the emergence of non-physical oscillations. The convergence of the entropy consistent scheme is also proved. The ideal MHD equations are numerically simulated by entropy stable scheme, entropy consistent scheme and the new high resolution entropy consistent scheme. The results show that the new scheme can accurately capture the structure of the solution, and has the characteristics of no oscillation, high resolution and robustness.
[1] | Lax, P.D. (1954) Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation. Communications on Pure and Applied Mathematics, 7, 159-193. https://doi.org/10.1002/cpa.3160070112 |
[2] | Lax, P.D. (1973) Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics, 1-48. https://doi.org/10.1137/1.9781611970562.ch1 |
[3] | Tadmor, E. (1987) The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws. I. Mathematics of Computation, 49, 91-103. https://doi.org/10.1090/s0025-5718-1987-0890255-3 |
[4] | Roe, P.L. (2006) Entropy Conservation Schemes for Euler Equations. Talk at HYP, Lyon. |
[5] | 邹世俊. 拉氏框架下理想磁流体方程组的间断有限元方法研究[D]: [博士学位论文]. 北京: 中国工程物理研究院, 2020. |
[6] | 徐骁, 高志明, 戴自换. 三维拉氏理想磁流体数值模拟方法[J]. 计算物理, 2020, 37(4): 403-412. |
[7] | Kim, J. (2018) Local Existence and Blow-Up Criterion of 3D Ideal Magnetohydrodynamics Equations. Acta Mathematica Scientia, 38, 1759-1766. https://doi.org/10.1016/s0252-9602(18)30844-0 |
[8] | 曹启伟, 肖德龙, 杨显俊, 等. 磁瑞利-泰勒不稳定性非线性演化数值模拟[J]. 计算物理, 2021, 38(1): 5-15. |
[9] | Winters, A.R. and Gassner, G.J. (2016) Affordable, Entropy Conserving and Entropy Stable Flux Functions for the Ideal MHD Equations. Journal of Computational Physics, 304, 72-108. https://doi.org/10.1016/j.jcp.2015.09.055 |
[10] | Toro, E.F. (2009) Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin. |
[11] | 任璇. 基于斜率限制器的高分辨率熵相容格式研究[D]: [硕士学位论文]. 西安: 长安大学, 2021. |
[12] | 沈亚玲, 封建湖, 郑素佩, 等. 一种基于新型斜率限制器的理想磁流体方程的高分辨率熵相容格式[J]. 计算物理, 2022, 39(3): 297-308. |
[13] | 张成治, 郑素佩, 陈雪, 张蕊. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023, 44(11): 1398-1412. |
[14] | Jeffrey, A. and Taniuti, A. (1964) Non-Linear Wave Propagation. Academic Press, New York. |
[15] | Friedrichs, K.O. and Lax, P.D. (1971) Systems of Conservation Equations with a Convex Extension. Proceedings of the National Academy of Sciences, 68, 1686-1688. https://doi.org/10.1073/pnas.68.8.1686 |
[16] | Tadmor, E. (2003) Entropy Stability Theory for Difference Approximations of Nonlinear Conservation Laws and Related Time-Dependent Problems. Acta Numerica, 12, 451-512. https://doi.org/10.1017/s0962492902000156 |
[17] | Ismail, F. and Roe, P.L. (2009) Affordable, Entropy-Consistent Euler Flux Functions II: Entropy Production at Shocks. Journal of Computational Physics, 228, 5410-5436. https://doi.org/10.1016/j.jcp.2009.04.021 |
[18] | Barth, T.J. (1999) Numerical Methods for Gasdynamic Systems on Unstructured Meshes. In: Kroner, M.O.D. and Rhode, C., Eds., An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Springer, Berlin, 195-285. https://doi.org/10.1007/978-3-642-58535-7_5 |
[19] | 李雪. 理想磁流体方程的高分辨率熵稳定格式研究[D]: [硕士学位论文]. 西安: 长安大学, 2018. |