全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基质金属蛋白酶家族调控乳腺癌发展机制研究进展
Advances in the Study of Mechanisms by Which the Matrix Metalloproteinase Family Regulates the Development of Breast Cancer

DOI: 10.12677/acm.2024.1482280, PP. 765-772

Keywords: 乳腺癌,基质金属蛋白酶,机制,研究进展
Breast Cancer
, Matrix Metalloproteinases, Mechanism, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:了解基质金属蛋白酶(matrix metalloproteinases, MMPs)家族调控乳腺癌发展及其机制研究的进展,以期为乳腺癌的基础研究及临床的诊断和治疗提供借鉴和帮助。方法:对近年来国内外关于MMPs调控乳腺癌发生、发展及其机制研究的相关文献进行综述。结果:MMPs家族中大多数成员的非正常表达均可导致细胞外基质降解、细胞侵袭和附着并显著加速上皮间质转化进程,从而促进HCC的侵袭及转移。目前与乳腺癌发展相关研究较多的MMPs包括MMP-1、2、3、7、9、10、11、13,14、26,其余MMPs家族成员与乳腺癌发展相关的研究还相对较有限。结论:MMPs家族(尤其是MMP-1、2、3、7、9、10、11、13,14、26)在增殖、侵袭、转移等进展过程中起十分重要的作用。进一步探索MMPs家族所有成员与乳腺癌发展可能存在的内在联系,对预测乳腺癌转移潜力和预后情况及开发新的或改进乳腺癌当前靶向抗癌疗法至关重要。
Objective: To understand the research progress of the matrix metalloproteinases (MMPs) family regulating breast cancer development and its mechanisms, aiming to provide references and assistance for basic research, clinical diagnosis, and treatment of breast cancer. Methods: Recent domestic and international literature on the regulation of breast cancer occurrence and development by MMPs and their mechanisms was reviewed. Results: The abnormal expression of most members of the MMPs family can lead to extracellular matrix degradation, cell invasion, and attachment, significantly accelerating the epithelial-mesenchymal transition process, thereby promoting the invasion and metastasis of breast cancer. Currently, the MMPs most frequently studied in relation to breast cancer development include MMP-1, 2, 3, 7, 9, 10, 11, 13, 14, and 26, while research on other MMPs family members in relation to breast cancer development is relatively limited. Conclusions: The MMPs family (especially MMP-1, 2, 3, 7, 9, 10, 11, 13, 14, and 26) plays a crucial role in the proliferation, invasion, and metastasis of breast cancer. Further exploration of the potential intrinsic connections between all members of the MMPs family and breast cancer development is essential for predicting metastasis potential and prognosis of breast cancer, as well as for developing new or improved current targeted anti-cancer therapies for breast cancer.

References

[1]  王少明, 郑荣寿, 韩冰峰, 李荔, 陈茹, 孙可欣, 曾红梅, 魏文强, 赫捷. 2022年中国人群恶性肿瘤发病与死亡年龄特征分析[J]. 中国肿瘤, 2024, 33(3): 165-174.
[2]  李培, 吴炅. 中国乳腺癌外科治疗现状和新趋势[J]. 中国肿瘤临床, 2022, 49(22): 1151-1155.
[3]  Cai, N., Cheng, K., Ma, Y., et al. (2024) Targeting MMP9 in CTNNB1 Mutant Hepatocellular Carcinoma Restores CD8+ T Cell-Mediated Antitumour Immunity and Improves Anti-PD-1 Efficacy. Gut, 73, 985-999.
[4]  Laronha, H. and Caldeira, J. (2020) Structure and Function of Human Matrix Metalloproteinases. Cells, 9, Article No. 1076.
https://doi.org/10.3390/cells9051076
[5]  Wang, X. and Khalil, R.A. (2018) Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. In: Advances in Pharmacology, Elsevier, Amsterdam, 241-330.
https://doi.org/10.1016/bs.apha.2017.08.002
[6]  Molière, S., Jaulin, A., Tomasetto, C. and Dali-Youcef, N. (2023) Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. International Journal of Molecular Sciences, 24, Article No. 10649.
https://doi.org/10.3390/ijms241310649
[7]  Cui, N., Hu, M. and Khalil, R.A. (2017) Biochemical and Biological Attributes of Matrix Metalloproteinases. In: Progress in Molecular Biology and Translational Science, Elsevier, Amsterdam, 1-73.
https://doi.org/10.1016/bs.pmbts.2017.02.005
[8]  Xu, G., Ou, L., Liu, Y., Wang, X., Liu, K., Li, J., et al. (2020) Upregulated Expression of MMP Family Genes Is Associated with Poor Survival in Patients with Esophageal Squamous Cell Carcinoma via Regulation of Proliferation and Epithelial-Mesenchymal Transition. Oncology Reports, 44, 29-42.
https://doi.org/10.3892/or.2020.7606
[9]  Brkic, M., Balusu, S., Libert, C. and Vandenbroucke, R.E. (2015) Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases. Mediators of Inflammation, 2015, Article ID: 620581.
https://doi.org/10.1155/2015/620581
[10]  Liu, J. and Khalil, R.A. (2017) Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. In: Progress in Molecular Biology and Translational Science, Elsevier, Amsterdam, 355-420.
https://doi.org/10.1016/bs.pmbts.2017.04.003
[11]  Ra, H. and Parks, W.C. (2007) Control of Matrix Metalloproteinase Catalytic Activity. Matrix Biology, 26, 587-596.
https://doi.org/10.1016/j.matbio.2007.07.001
[12]  Agarwal, S., Loder, S., Brownley, C., Cholok, D., Mangiavini, L., Li, J., et al. (2015) Inhibition of Hif1α Prevents Both Trauma-Induced and Genetic Heterotopic Ossification. Proceedings of the National Academy of Sciences, 113, E338-E347.
https://doi.org/10.1073/pnas.1515397113
[13]  Aroner, S.A., Rosner, B.A., Tamimi, R.M., Tworoger, S.S., Baur, N., Joos, T.O., et al. (2014) Plasma Matrix Metalloproteinase 1, 3, and 7 Levels and Breast Cancer Risk in the Nurses’ Health Study. Cancer Causes & Control, 25, 1717-1723.
https://doi.org/10.1007/s10552-014-0462-7
[14]  Kim, D., Kim, J., Kim, E., Na, H., Cha, Y., Chung, J.H., et al. (2009) 15-Deoxy-Δ12,14-Prostaglandin J2 Upregulates the Expression of Heme Oxygenase-1 and Subsequently Matrix Metalloproteinase-1 in Human Breast Cancer Cells: Possible Roles of Iron and ROS. Carcinogenesis, 30, 645-654.
https://doi.org/10.1093/carcin/bgp012
[15]  Hotary, K.B., Allen, E.D., Brooks, P.C., Datta, N.S., Long, M.W. and Weiss, S.J. (2003) Membrane Type I Matrix Metalloproteinase Usurps Tumor Growth Control Imposed by the Three-Dimensional Extracellular Matrix. Cell, 114, 33-45.
https://doi.org/10.1016/s0092-8674(03)00513-0
[16]  Wang, B., Ding, Y., Fan, P., Wang, B., Xu, J. and Wang, W. (2014) Expression and Significance of MMP2 and Hif-1α in Hepatocellular Carcinoma. Oncology Letters, 8, 539-546.
https://doi.org/10.3892/ol.2014.2189
[17]  Dieci, M.V., Barbieri, E., Piacentini, F., Ficarra, G., Bettelli, S., Dominici, M., et al. (2013) Discordance in Receptor Status between Primary and Recurrent Breast Cancer Has a Prognostic Impact: A Single-Institution Analysis. Annals of Oncology, 24, 101-108.
https://doi.org/10.1093/annonc/mds248
[18]  Muramatsu, T. (2015) Basigin (CD147), a Multifunctional Transmembrane Glycoprotein with Various Binding Partners. Journal of Biochemistry, 159, 481-490.
https://doi.org/10.1093/jb/mvv127
[19]  Yin, H., Shao, Y. and Chen, X. (2016) The Effects of CD147 on the Cell Proliferation, Apoptosis, Invasion, and Angiogenesis in Glioma. Neurological Sciences, 38, 129-136.
https://doi.org/10.1007/s10072-016-2727-2
[20]  唐小乔, 桑剑锋, 张寅, 史先彪, 苏磊. CD147在乳腺癌细胞中的表达及对癌细胞增殖及TGF-β信号通路的影响[J]. 肿瘤学杂志, 2020(5): 413-417.
[21]  Dana, P., Kariya, R., Vaeteewoottacharn, K., Sawanyawisuth, K., Seubwai, W., Matsuda, K., et al. (2017) Upregulation of CD147 Promotes Metastasis of Cholangiocarcinoma by Modulating the Epithelial-to-Mesenchymal Transitional Process. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 25, 1047-1059.
https://doi.org/10.3727/096504016x14813899000565
[22]  Li, M.H., Hou, C.L., Wang, C. and Sun, A.J. (2016) HER-2, ER, PR Status Concordance in Primary Breast Cancer and Corresponding Metastatic Lesion in Lymph Node in Chinese Women. PathologyResearch and Practice, 212, 252-257.
https://doi.org/10.1016/j.prp.2015.11.019
[23]  Van Hove, I., Lemmens, K., Van de Velde, S., Verslegers, M. and Moons, L. (2012) Matrix Metalloproteinase‐3 in the Central Nervous System: A Look on the Bright Side. Journal of Neurochemistry, 123, 203-216.
https://doi.org/10.1111/j.1471-4159.2012.07900.x
[24]  Wan, J., Zhang, G., Li, X., Qiu, X., Ouyang, J., Dai, J., et al. (2021) Matrix Metalloproteinase 3: A Promoting and Destabilizing Factor in the Pathogenesis of Disease and Cell Differentiation. Frontiers in Physiology, 12, Article ID: 663978.
https://doi.org/10.3389/fphys.2021.663978
[25]  Bourboulia, D. and Stetler-Stevenson, W.G. (2010) Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs): Positive and Negative Regulators in Tumor Cell Adhesion. Seminars in Cancer Biology, 20, 161-168.
https://doi.org/10.1016/j.semcancer.2010.05.002
[26]  Yokoyama, Y., Grünebach, F., Schmidt, S.M., Heine, A., Häntschel, M., Stevanovic, S., et al. (2008) Matrilysin (MMP-7) Is a Novel Broadly Expressed Tumor Antigen Recognized by Antigen-Specific T Cells. Clinical Cancer Research, 14, 5503-5511.
https://doi.org/10.1158/1078-0432.ccr-07-4041
[27]  Fang, C., Wen, G., Zhang, L., Lin, L., Moore, A., Wu, S., et al. (2013) An Important Role of Matrix Metalloproteinase-8 in Angiogenesis in Vitro and in Vivo. Cardiovascular Research, 99, 146-155.
https://doi.org/10.1093/cvr/cvt060
[28]  Dejonckheere, E., Vandenbroucke, R.E. and Libert, C. (2011) Matrix Metalloproteinase8 Has a Central Role in Inflammatory Disorders and Cancer Progression. Cytokine & Growth Factor Reviews, 22, 73-81.
https://doi.org/10.1016/j.cytogfr.2011.02.002
[29]  Decock, J., Long, J., Laxton, R.C., Shu, X., Hodgkinson, C., Hendrickx, W., et al. (2007) Association of Matrix Metalloproteinase-8 Gene Variation with Breast Cancer Prognosis. Cancer Research, 67, 10214-10221.
https://doi.org/10.1158/0008-5472.can-07-1683
[30]  Zhang, G., Miyake, M., Lawton, A., Goodison, S. and Rosser, C.J. (2014) Matrix Metalloproteinase-10 Promotes Tumor Progression through Regulation of Angiogenic and Apoptotic Pathways in Cervical Tumors. BMC Cancer, 14, Article No. 310.
https://doi.org/10.1186/1471-2407-14-310
[31]  Barksby, H.E., Milner, J.M., Patterson, A.M., Peake, N.J., Hui, W., Robson, T., et al. (2006) Matrix Metalloproteinase 10 Promotion of Collagenolysis via Procollagenase Activation: Implications for Cartilage Degradation in Arthritis. Arthritis & Rheumatism, 54, 3244-3253.
https://doi.org/10.1002/art.22167
[32]  Nakamura, H., Fujii, Y., Ohuchi, E., Yamamoto, E. and Okada, Y. (1998) Activation of the Precursor of Human Stromelysin 2 and Its Interactions with Other Matrix Metalloproteinases. European Journal of Biochemistry, 253, 67-75.
https://doi.org/10.1046/j.1432-1327.1998.2530067.x
[33]  Dali-Youcef, N., Hnia, K., Blaise, S., Messaddeq, N., Blanc, S., Postic, C., et al. (2016) Matrix Metalloproteinase 11 Protects from Diabesity and Promotes Metabolic Switch. Scientific Reports, 6, Article No. 25140.
https://doi.org/10.1038/srep25140
[34]  von Marschall, Z., Riecken, E.O. and Rosewicz, S. (1998) Stromelysin 3 Is Overexpressed in Human Pancreatic Carcinoma and Regulated by Retinoic Acid in Pancreatic Carcinoma Cell Lines. Gut, 43, 692-698.
https://doi.org/10.1136/gut.43.5.692
[35]  Barrasa, J.I., Olmo, N., Santiago-Gómez, A., Lecona, E., Anglard, P., Turnay, J., et al. (2012) Histone Deacetylase Inhibitors Upregulate MMP11 Gene Expression through Sp1/smad Complexes in Human Colon Adenocarcinoma Cells. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1823, 570-581.
https://doi.org/10.1016/j.bbamcr.2011.12.010
[36]  Genestie, C., Zafrani, B., Asselain, B., et al. (1998) Comparison of the Prognostic Value of Scarff-Bloom-Richardson and Nottingham-Histological Grades in a Series of 825 Cases of Breast Cancer: Major Importance of the Mitotic Count as a Component of both Grading Systems. Anticancer Research, 18, 571-576.
[37]  Egeblad, M. and Werb, Z. (2002) New Functions for the Matrix Metalloproteinases in Cancer Progression. Nature Reviews Cancer, 2, 161-174.
https://doi.org/10.1038/nrc745
[38]  Wolf, C., Rouyer, N., Lutz, Y., Adida, C., Loriot, M., Bellocq, J.P., et al. (1993) Stromelysin 3 Belongs to a Subgroup of Proteinases Expressed in Breast Carcinoma Fibroblastic Cells and Possibly Implicated in Tumor Progression. Proceedings of the National Academy of Sciences, 90, 1843-1847.
https://doi.org/10.1073/pnas.90.5.1843
[39]  Basset, P., Okada, A., Chenard, M., Kannan, R., Stoll, I., Anglard, P., et al. (1997) Matrix Metalloproteinases as Stromal Effectors of Human Carcinoma Progression: Therapeutic Implications. Matrix Biology, 15, 535-541.
https://doi.org/10.1016/s0945-053x(97)90028-7
[40]  Min, K., Kim, D., Do, S., Pyo, J., Kim, K., Chae, S.W., et al. (2012) Diagnostic and Prognostic Relevance of MMP-11 Expression in the Stromal Fibroblast-Like Cells Adjacent to Invasive Ductal Carcinoma of the Breast. Annals of Surgical Oncology, 20, 433-442.
https://doi.org/10.1245/s10434-012-2734-3
[41]  Toriseva, M.J., Ala-aho, R., Karvinen, J., Baker, A.H., Marjomäki, V.S., Heino, J., et al. (2007) Collagenase-3 (MMP-13) Enhances Remodeling of Three-Dimensional Collagen and Promotes Survival of Human Skin Fibroblasts. Journal of Investigative Dermatology, 127, 49-59.
https://doi.org/10.1038/sj.jid.5700500
[42]  Tardif, G., Reboul, P., Pelletier, J. and Martel-Pelletier, J. (2004) Ten Years in the Life of an Enzyme: The Story of the Human MMP-13 (Collagenase-3). Modern Rheumatology, 14, 197-204.
https://doi.org/10.3109/s10165-004-0292-7
[43]  Hsu, C., Shen, G. and Ko, J. (2006) Matrix Metalloproteinase-13 Expression Is Associated with Bone Marrow Microinvolvement and Prognosis in Non-Small Cell Lung Cancer. Lung Cancer, 52, 349-357.
https://doi.org/10.1016/j.lungcan.2006.01.011
[44]  Nannuru, K.C., Futakuchi, M., Varney, M.L., Vincent, T.M., Marcusson, E.G. and Singh, R.K. (2010) Matrix Metalloproteinase (MMP)-13 Regulates Mammary Tumor-Induced Osteolysis by Activating MMP9 and Transforming Growth Factor-Β Signaling at the Tumor-Bone Interface. Cancer Research, 70, 3494-3504.
https://doi.org/10.1158/0008-5472.can-09-3251
[45]  Morrison, C., Mancini, S., Cipollone, J., Kappelhoff, R., Roskelley, C. and Overall, C. (2011) Microarray and Proteomic Analysis of Breast Cancer Cell and Osteoblast Co-Cultures: Role of Osteoblast Matrix Metalloproteinase (MMP)-13 in Bone Metastasis. Journal of Biological Chemistry, 286, 34271-34285.
https://doi.org/10.1074/jbc.m111.222513
[46]  Piecha, D., Weik, J., Kheil, H., Becher, G., Timmermann, A., Jaworski, A., et al. (2009) Novel Selective MMP-13 Inhibitors Reduce Collagen Degradation in Bovine Articular and Human Osteoarthritis Cartilage Explants. Inflammation Research, 59, 379-389.
https://doi.org/10.1007/s00011-009-0112-9
[47]  Lynch, C.C. (2011) Matrix Metalloproteinases as Master Regulators of the Vicious Cycle of Bone Metastasis. Bone, 48, 44-53.
https://doi.org/10.1016/j.bone.2010.06.007
[48]  Niland, S., Riscanevo, A.X. and Eble, J.A. (2021) Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. International Journal of Molecular Sciences, 23, Article No. 146.
https://doi.org/10.3390/ijms23010146
[49]  王婧, 毛杰, 周蓓, 等. MMP-14和c-myc基因在乳腺癌组织中表达及临床意义[J]. 生物医学工程与临床, 2020, 24(1): 81-86.
[50]  黎联. 基质金属蛋白酶-26在非小细胞肺癌中的表达、临床意义及调控机制[D]: [博士学位论文]. 重庆: 重庆医科大学, 2009.
[51]  Marchenko, G.N., Ratnikov, B.I., Rozanov, D.V., Godzik, A., Deryugina, E.I. and Strongin, A.Y. (2001) Characterization of Matrix Metalloproteinase-26, a Novel Metalloproteinase Widely Expressed in Cancer Cells of Epithelial Origin. Biochemical Journal, 356, 705-718.
https://doi.org/10.1042/bj3560705
[52]  Zhao, Y., Xiao, A., Newcomer, R.G., Park, H.I., Kang, T., Chung, L.W.K., et al. (2003) Activation of Pro-Gelatinase B by Endometase/Matrilysin-2 Promotes Invasion of Human Prostate Cancer Cells. Journal of Biological Chemistry, 278, 15056-15064.
https://doi.org/10.1074/jbc.m210975200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133