|
新冠疫情对肺炎支原体感染影响的研究进展
|
Abstract:
肺炎支原体(Mycoplasma pneumoniae, MP)是儿童社区获得性肺炎的常见病原体,通过飞沫传播,周期性地引起地区性暴发流行。新冠疫情期间采取的非药物干预措施(non-pharmaceutical interventions, NPIs)在控制新型冠状病毒传播的同时,也显著影响了MP的流行病学特征、耐药性及临床表现。随着防控措施的放松,MP疫情出现了延迟但显著的反弹,这一现象可能与MP独特的生物学特征、免疫债务、病原体的交互影响以及抗生素经验性使用等多重因素有关。本文就新冠疫情期间及疫情后期MP流行病学、大环内酯类耐药性及临床表现进行了综述,了解新冠疫情对肺炎支原体感染的影响,并探讨了肺炎支原体肺炎的治疗进展。
Mycoplasma pneumoniae is a common pathogen in community-acquired pneumonia in children, spreading through droplet transmission and periodically causing regional outbreaks. The non-pharmaceutical interventions implemented during the COVID-19 pandemic have significantly impacted the epidemiological characteristics, drug resistance, and clinical manifestations of M. pneumoniae while controlling the spread of the novel coronavirus. With the relaxation of containment measures, there has been a delayed but significant rebound in M. pneumoniae outbreaks. This phenomenon may be related to the unique biological characteristics of M. pneumoniae, immune debt, interactions with other pathogens, and the empirical use of antibiotics among multiple factors. This article reviews the epidemiology of M. pneumoniae, macrolide resistance, and clinical manifestations during and after the COVID-19 pandemic, aiming to understand the impact of the pandemic on M. pneumoniae infections, and explores the therapeutic advancements for M. pneumoniae pneumonia.
[1] | Atkinson, T.P., Balish, M.F. and Waites, K.B. (2008) Epidemiology, Clinical Manifestations, Pathogenesis and Laboratory Detection of Mycoplasma pneumoniae Infections. FEMS Microbiology Reviews, 32, 956-973. https://doi.org/10.1111/j.1574-6976.2008.00129.x |
[2] | Yum, S., Hong, K., Sohn, S., Kim, J. and Chun, B.C. (2021) Trends in Viral Respiratory Infections during COVID-19 Pandemic, South Korea. Emerging Infectious Diseases, 27, 1685-1688. https://doi.org/10.3201/eid2706.210135 |
[3] | Vervloet, L.A., Marguet, C. and Camargos, P.A.M. (2007) Infection by Mycoplasma pneumoniae and Its Importance as an Etiological Agent in Childhood Community-Acquired Pneumonias. Brazilian Journal of Infectious Diseases, 11, 507-514. https://doi.org/10.1590/s1413-86702007000500012 |
[4] | Dumke, R., Catrein, I., Herrmann, R. and Jacobs, E. (2004) Preference, Adaptation and Survival of Mycoplasma pneumoniae Subtypes in an Animal Model. International Journal of Medical Microbiology, 294, 149-155. https://doi.org/10.1016/j.ijmm.2004.06.020 |
[5] | Meyer Sauteur, P.M., Beeton, M.L., Pereyre, S., Bébéar, C., Gardette, M., Hénin, N., et al. (2024) Mycoplasma pneumoniae: Delayed Re-Emergence after COVID-19 Pandemic Restrictions. The Lancet Microbe, 5, e100-e101. https://doi.org/10.1016/s2666-5247(23)00344-0 |
[6] | Chen, M., Zhou, Y., Jin, S., Bai, S., Tang, X., Liu, Q., et al. (2024) Changing Clinical Characteristics of Pediatric Inpatients with Pneumonia during COVID-19 Pandamic: A Retrospective Study. Italian Journal of Pediatrics, 50, Article No. 84. https://doi.org/10.1186/s13052-024-01651-8 |
[7] | Clark, S.A., Campbell, H., Ribeiro, S., Bertran, M., Walsh, L., Walker, A., et al. (2023) Epidemiological and Strain Characteristics of Invasive Meningococcal Disease Prior To, during and after COVID-19 Pandemic Restrictions in England. Journal of Infection, 87, 385-391. https://doi.org/10.1016/j.jinf.2023.09.002 |
[8] | Meyer Sauteur, P.M., Beeton, M.L., Uldum, S.A., Bossuyt, N., Vermeulen, M., Loens, K., et al. (2022) Mycoplasma pneumoniae Detections before and during the COVID-19 Pandemic: Results of a Global Survey, 2017 to 2021. Eurosurveillance, 27, Article 2100746. https://doi.org/10.2807/1560-7917.es.2022.27.19.2100746 |
[9] | Qiu, W., Ding, J., Zhang, H., Huang, S., Huang, Z., Lin, M., et al. (2024) Mycoplasma pneumoniae Detections in Children with Lower Respiratory Infection before and during the COVID-19 Pandemic: A Large Sample Study in China from 2019 to 2022. BMC Infectious Diseases, 24, Article No. 549. https://doi.org/10.1186/s12879-024-09438-2 |
[10] | Meyer Sauteur, P.M., Beeton, M.L., Pereyre, S., Bébéar, C., Gardette, M., Hénin, N., et al. (2023) Mycoplasma pneumoniae: Gone Forever? The Lancet Microbe, 4, e763. https://doi.org/10.1016/s2666-5247(23)00182-9 |
[11] | Sauteur, P.M.M., Chalker, V.J., Berger, C., Nir-Paz, R., Beeton, M.L., Pereyre, S., et al. (2022) Mycoplasma pneumoniae Beyond the COVID-19 Pandemic: Where Is It? The Lancet Microbe, 3, e897. https://doi.org/10.1016/s2666-5247(22)00190-2 |
[12] | Li, X., Li, T., Chen, N., Kang, P. and Yang, J. (2023) Changes of Mycoplasma pneumoniae Prevalence in Children before and after COVID-19 Pandemic in Henan, China. Journal of Infection, 86, 256-308. https://doi.org/10.1016/j.jinf.2022.12.030 |
[13] | Xing, F., Chiu, K.H., Deng, C., Ye, H., Sun, L., Su, Y., et al. (2024) Post-Covid-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study. Antibiotics, 13, Article 262. https://doi.org/10.3390/antibiotics13030262 |
[14] | Xu, Y., Yang, C., Sun, P., Zeng, F., Wang, Q., Wu, J., et al. (2024) Epidemic Features and Megagenomic Analysis of Childhood Mycoplasma pneumoniae Post COVID-19 Pandemic: A 6-Year Study in Southern China. Emerging Microbes & Infections, 13, Article 2353298. https://doi.org/10.1080/22221751.2024.2353298 |
[15] | Wang, A., Wu, Z., Huang, Y., Zhou, H., Wu, L., Jia, C., et al. (2021) A 3D-Printed Microfluidic Device for qPCR Detection of Macrolide-Resistant Mutations of Mycoplasma pneumoniae. Biosensors, 11, Article 427. https://doi.org/10.3390/bios11110427 |
[16] | Okazaki, N., Narita, M., Yamada, S., Izumikawa, K., Umetsu, M., Kenri, T., et al. (2001) Characteristics of Macrolide-Resistant Mycoplasma pneumoniae Strains Isolated from Patients and Induced with Erythromycin in Vitro. Microbiology and Immunology, 45, 617-620. https://doi.org/10.1111/j.1348-0421.2001.tb01293.x |
[17] | Gao, L., Yin, J., Hu, Y., Liu, X., Feng, X., He, J., et al. (2019) The Epidemiology of Paediatric Mycoplasma pneumoniae Pneumonia in North China: 2006 to 2016. Epidemiology and Infection, 147, e192. https://doi.org/10.1017/s0950268819000839 |
[18] | Pereyre, S., Goret, J. and Bébéar, C. (2016) Mycoplasma pneumoniae: Current Knowledge on Macrolide Resistance and Treatment. Frontiers in Microbiology, 7, Article 974. https://doi.org/10.3389/fmicb.2016.00974 |
[19] | Jiang, Y., Dou, H., Xu, B., Xu, B., Zhou, W., Wang, H., et al. (2024) Macrolide Resistance of Mycoplasma pneumoniae in Several Regions of China from 2013 to 2019. Epidemiology and Infection, 152, e75. https://doi.org/10.1017/s0950268824000323 |
[20] | Chen, J., Zhang, J., Lu, Z., Chen, Y., Huang, S., Li, H., et al. (2022) Mycoplasma pneumoniae among Chinese Outpatient Children with Mild Respiratory Tract Infections during the Coronavirus Disease 2019 Pandemic. Microbiology Spectrum, 10, e01550-21. https://doi.org/10.1128/spectrum.01550-21 |
[21] | Jiang, T., Sun, L., Wang, T., Qi, H., Tang, H., Wang, Y., et al. (2023) The Clinical Significance of Macrolide Resistance in Pediatric Mycoplasma pneumoniae Infection during COVID-19 Pandemic. Frontiers in Cellular and Infection Microbiology, 13, Article 1181402. https://doi.org/10.3389/fcimb.2023.1181402 |
[22] | Li, H., Li, S., Yang, H., Chen, Z. and Zhou, Z. (2024) Resurgence of Mycoplasma pneumonia by Macrolide-Resistant Epidemic Clones in China. The Lancet Microbe, 5, e515. https://doi.org/10.1016/s2666-5247(23)00405-6 |
[23] | Chen, Y., Li, X., Fu, Y., Yu, Y. and Zhou, H. (2024) Whole-Genome Sequencing Unveils the Outbreak of Mycoplasma pneumoniae in Mainland of China. The Lancet Microbe, 2024, Article 100870. https://doi.org/10.1016/s2666-5247(24)00086-7 |
[24] | Leng, M., Yang, J. and Liu, X. (2024) Macrolide-Resistant Mycoplasma pneumoniae Infection in Children Observed during a Period of High Incidence in Henan, China. Heliyon, 10, e33697. https://doi.org/10.1016/j.heliyon.2024.e33697 |
[25] | Waites, K.B. and Talkington, D.F. (2004) Mycoplasma pneumoniae and Its Role as a Human Pathogen. Clinical Microbiology Reviews, 17, 697-728. https://doi.org/10.1128/cmr.17.4.697-728.2004 |
[26] | Cohen, R., Ashman, M., Taha, M., Varon, E., Angoulvant, F., Levy, C., et al. (2021) Pediatric Infectious Disease Group (GPIP) Position Paper on the Immune Debt of the COVID-19 Pandemic in Childhood, How Can We Fill the Immunity Gap? Infectious Diseases Now, 51, 418-423. https://doi.org/10.1016/j.idnow.2021.05.004 |
[27] | Li, T., Chu, C., Wei, B. and Lu, H. (2023) Immunity Debt: Hospitals Need to Be Prepared in Advance for Multiple Respiratory Diseases That Tend to Co-Occur. BioScience Trends, 17, 499-502. https://doi.org/10.5582/bst.2023.01303 |
[28] | Hatter, L., Eathorne, A., Hills, T., Bruce, P. and Beasley, R. (2021) Respiratory Syncytial Virus: Paying the Immunity Debt with Interest. The Lancet Child & Adolescent Health, 5, e44-e45. https://doi.org/10.1016/s2352-4642(21)00333-3 |
[29] | Liu, B., Xu, L., Ma, Y., Wang, H., Xu, X., Wang, Y., et al. (2024) Evidence of Immunity Gap: Decline in Antibodies against M. pneumoniae during the COVID-19 Pandemic. Journal of Infection, 89, Article 106209. https://doi.org/10.1016/j.jinf.2024.106209 |
[30] | Gao, Y., Feng, X., Yuan, T., Li, M., Wei, M. and Li, S. (2024) Post-Pandemic Trends: Epidemiological and Etiological Insights into Acute Respiratory Infections in Southern China. Diagnostic Microbiology and Infectious Disease, 109, Article 116293. https://doi.org/10.1016/j.diagmicrobio.2024.116293 |
[31] | Torres, A., Cilloniz, C., Niederman, M.S., Menéndez, R., Chalmers, J.D., Wunderink, R.G., et al. (2021) Pneumonia. Nature Reviews Disease Primers, 7, Article No. 25. https://doi.org/10.1038/s41572-021-00259-0 |
[32] | Wang, K., Gill, P., Perera, R., Thomson, A., Mant, D. and Harnden, A. (2012) Clinical Symptoms and Signs for the Diagnosis of Mycoplasma pneumoniae in Children and Adolescents with Community-Acquired Pneumonia. Cochrane Database of Systematic Reviews, 2012, Article No. CD009175. https://doi.org/10.1002/14651858.cd009175.pub2 |
[33] | Chen, Y., Hsu, W. and Chang, T. (2020) Macrolide-Resistant Mycoplasma pneumoniae Infections in Pediatric Community-Acquired Pneumonia. Emerging Infectious Diseases, 26, 1382-1391. https://doi.org/10.3201/eid2607.200017 |
[34] | Li, J., Maiwald, M., Loo, L.H., Soong, H.Y., Octavia, S., Thoon, K.C., et al. (2022) Clinical Characteristics of Macrolide-Resistant Mycoplasma pneumoniae Infections among Hospitalized Children in Singapore. Annals of the Academy of Medicine, Singapore, 51, 653-656. https://doi.org/10.47102/annals-acadmedsg.2022213 |
[35] | Li, P., Wang, W., Zhang, X., Pan, J. and Gong, L. (2024) Observational Retrospective Clinical Study on Clinical Features of Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Chinese Pediatric Cases. Scientific Reports, 14, Article No. 5632. https://doi.org/10.1038/s41598-024-55311-2 |
[36] | Fan, F., Lv, J., Yang, Q. and Jiang, F. (2023) Clinical Characteristics and Serum Inflammatory Markers of Community-Acquired Mycoplasma pneumonia in Children. The Clinical Respiratory Journal, 17, 607-617. https://doi.org/10.1111/crj.13620 |
[37] | Gong, H., Sun, B., Chen, Y. and Chen, H. (2021) The Risk Factors of Children Acquiring Refractory Mycoplasma pneumoniae Pneumonia. Medicine, 100, e24894. https://doi.org/10.1097/md.0000000000024894 |
[38] | Chen, Q., Hu, T., Wu, L. and Chen, L. (2024) Clinical Features and Biomarkers for Early Prediction of Refractory Mycoplasma pneumoniae Pneumonia in Children. Emergency Medicine International, 2024, 1-7. https://doi.org/10.1155/2024/9328177 |
[39] | Yang, D., Chen, L. and Chen, Z. (2018) The Timing of Azithromycin Treatment Is Not Associated with the Clinical Prognosis of Childhood Mycoplasma pneumoniae Pneumonia in High Macrolide-Resistant Prevalence Settings. PLOS ONE, 13, e0191951. https://doi.org/10.1371/journal.pone.0191951 |
[40] | 赵顺英, 钱素云, 陈志敏, 等. 儿童肺炎支原体肺炎诊疗指南[J]. 传染病信息, 2023, 36(4): 291-297. |
[41] | Cai, F., Li, J., Liang, W., Wang, L. and Ruan, J. (2024) Effectiveness and Safety of Tetracyclines and Quinolones in People with Mycoplasma pneumonia: A Systematic Review and Network Meta-Analysis. eClinicalMedicine, 71, Article 102589. https://doi.org/10.1016/j.eclinm.2024.102589 |
[42] | Grossman, E.R., Walchek, A., Freedman, H. and Flanagan, C. (1971) Tetracyclines and Permanent Teeth: The Relation between Dose and Tooth Color. Pediatrics, 47, 567-570. https://doi.org/10.1542/peds.47.3.567 |
[43] | Kimberlin, D.W. (2018) Red Book: 2018-2021 Report of the Committee on Infectious Diseases. 31st Edition, American Academy of Pediatrics. |
[44] | Shen, H., Liu, C., Lin, H., Xu, L., Wang, G. and Yan, M. (2022) The Efficacy and Safety of Minocycline as Adjuvant Therapy in Refractory Mycoplasma pneumonia in Chinese Children: A Meta-Analysis. Italian Journal of Pediatrics, 48, Article No. 176. https://doi.org/10.1186/s13052-022-01362-y |
[45] | Chen, Y., Dong, S., Tian, L., Chen, H., Chen, J. and He, C. (2022) Combination of Azithromycin and Methylprednisolone Alleviates Mycoplasma pneumoniae Induced Pneumonia by Regulating miR‑499a‑5p/STAT3 Axis. Experimental and Therapeutic Medicine, 24, 1-10. https://doi.org/10.3892/etm.2022.11515 |
[46] | Luo, Z., Luo, J., Liu, E., Xu, X., Liu, Y., Zeng, F., et al. (2013) Effects of Prednisolone on Refractory Mycoplasma pneumoniae Pneumonia in Children. Pediatric Pulmonology, 49, 377-380. https://doi.org/10.1002/ppul.22752 |
[47] | Ding, G., Zhang, X., Vinturache, A., van Rossum, A.M.C., Yin, Y. and Zhang, Y. (2024) Challenges in the Treatment of Pediatric Mycoplasma pneumoniae Pneumonia. European Journal of Pediatrics, 183, 3001-3011. https://doi.org/10.1007/s00431-024-05519-1 |