全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于叶绿体基因组变异位点的葛属(豆科)植物资源遗传多样性的分子鉴定新方法
A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Pueraria DC. (Fabaceae) Based on Variable Base Sites of Complete Chloroplast Genome

DOI: 10.12677/aac.2024.143020, PP. 164-175

Keywords: 豆科,葛属,植物遗传多样性,叶绿体基因组,核苷酸变异位点,分子鉴定
Fabaceae
, Pueraria DC., Plant Genetic Diversity, Chloroplast Genome, Variable Nucleotide Site, Molecular Identification

Full-Text   Cite this paper   Add to My Lib

Abstract:

精准鉴定遗传多样性是植物资源利用和深入开展科学研究的基础。本文利用葛属3个种的叶绿体基因组序列中的物种特有的624个核苷酸变异位点作为分子性状,首次编制了分子鉴定检索表,供试样品得到成功鉴定。物种特有变异位点的数量和核苷酸构成存在种间差异。食用葛的特有变异位点的数量(576)最多,粉葛(38)和葛藤(10)的特有变异位点的数量明显较少。食用葛的特有变异位点中,4类核苷酸的比例由大到小依次为:T (26.91%)、A (26.04%)、C (24.13%)和G (22.92%),差异不大。粉葛的特有变异位点中,T (39.47%)的比例最高,随后依次为C (26.32%)、A (18.42%)和G (15.79%),T的比例是G的比例的约2.5倍。葛藤的特有变异位点数量相对稀少,其中,T的比例(50.00%)最高,是A或G的比例(20.00%)的2.5倍,是C的比例(10.00%)的5倍。结果显示,叶绿体基因组的单核苷酸变异位点信息可用于葛属植物资源遗传多样性的分子鉴定。本文调查了中国过去120多年来葛属植物标本的收集现状,讨论了存在的问题与对策。本研究对于葛属植物的分类修订、种质资源的保护和利用具有重要价值。
Accurate identification of genetic diversity is the basis for utilization of plant resources and further scientific research. In this paper, 624 taxon-specific variable nucleotide sites in the complete chloroplast genome of 3 species from the genus Pueraria DC. were used as molecular traits to identify successfully the genetic resources of this plant genus and compile a molecular classification key for the first time. There are differences in aspects of amount and base composition of taxon-specific variable nucleotide sites among the species. The amount of taxon-specific variable nucleotide sites in Pueraria edulis Pamp. (576) is the highest, those in Pueraria montana var. thomsonii (Benth.) M.R. Almeida (38) and Pueraria montana (Lour.) Merr. (10) are significantly fewer. The proportion of T (26.91%), A (26.04%), C (24.13%) and G (22.92%) is decreasing respectively but with small differences among taxon-specific variable nucleotide sites in Pueraria edulis Pamp. The proportion of T (39.47%) is the highest, followed by C (26.32%), A (18.42%) and G (15.79%) in taxon-specific variable nucleotide sites in Pueraria montana var. thomsonii, the proportion of T is 2.5 times that of G. Relatively, the amount of taxon-specific variable nucleotide sites is fewer in Pueraria montana, where the proportion of T (50.00%) is the highest, being 2.5 times that (20.00%) of A or G, and 5 times that (10.00%) of C. Our results indicated that taxon-specific variable nucleotide sites from the chloroplast genomes could be used for the molecular classification of the genetic diversity in the genus Pueraria resources. In this paper, the status of Pueraria plant specimens collected in the past 120 years in China is investigated and problems and possible strategies are discussed. This study is valuable for taxonomic revision, conservation and utilization of Pueraria plant germplasm

References

[1]  de Candolle, A.P. (1825) Mémoires sur les Légumineuses. Belin-Mandar, Auguste-Jean.
https://doi.org/10.5962/bhl.title.124031
[2]  Lackey, J.A. (1977) Neonotonia, a New Generic Name to Include Glycine wightii (Arnott) Verdcourt (Leguminosae, Papilionoideae). Phytologia, 37, 209-212.
[3]  Lackey, J.A. (1977) A Revised Classification of Phaseoleae (Leguminosae: Papilionoideae) and Its Relation to Canavanine Distribution. Botanical Journal of the Linnean Society, 74, 163-178.
https://doi.org/10.1111/j.1095-8339.1977.tb01173.x
[4]  Lackey, J.A. (1977) A Synopsis of Phaseoleae (Leguminosae, Papilionoideae). Ph.D. Thesis, Iowa State University.
[5]  van der Maesen, L.J.G. (1985) Revision of the Genus Pueraria DC. with Some Notes on Teyleria Backer: Leguminosae. Taylor & Francis.
[6]  van der Maesen, L.J.G. (1994) Pueraria, the Kudzu and Its Relatives, an Update of the Taxonomy. In: Sorensen, M., Ed., Proceedings of the First International Symposium on Tuberous Legumes, Guadeloupe, FWI, 55-86.
[7]  van der Maesen, L.J.G. (2002) Pueraria: Botanical Characteristics. In: Keung, W.M., Ed., Pueraria: The Genus Pueraria, Taylor & Francis, 1-28.
[8]  van der Maesen, L.J.G. and Almeida, S.M. (1988) Two Corrections to the Nomenclature in the Revision of Pueraria DC. The Journal of the Bombay Natural History Society, 85, 233-234.
[9]  中国科学院中国植物志编辑委员会. 中国植物志第41卷: 葛属[M]. 北京: 科学出版社, 1995.
https://www.iplant.cn
[10]  Wu, Z.Y., Hong, D.Y. and Raven, P.H. (2010) Pueraria Candolle. Science Press, Beijing and Missouri Botanical Garden Press, 244-248.
https://www.iplant.cn/info/Pueraria?t=foc
[11]  Keung, W.M. (2002) Pueraria: The Genus Pueraria. CRC Press.
https://doi.org/10.1201/9780203300978
[12]  Egan, A.N., Vatanparast, M. and Cagle, W. (2016) Parsing Polyphyletic Pueraria: Delimiting Distinct Evolutionary Lineages through Phylogeny. Molecular Phylogenetics & Evolution, 104, 44-59.
https://doi.org/10.1016/j.ympev.2016.08.001
[13]  Hoffberg, S.L., Bentley, K.E., Lee, J.B., Myhre, K.E., Iwao, K., Glenn, T.C. and Mauricio, R. (2015) Characterization of 15 Microsatellite Loci in Kudzu (Pueraria montana var. lobata) from the Native and Introduced Ranges. Conservation Genetics Resources, 7, 403-405.
https://doi.org/10.1007/s12686-014-0381-7
[14]  Heider, B., Fischer, E., Berndl, T. and Schultze-Kraft, R. (2007) Analysis of Genetic Variation among Accessions of Pueraria montana (Lour.) Merr. var. lobata and Pueraria phaseoloides (Roxb.) Benth. Based on RAPD Markers. Genetic Resources and Crop Evolution, 54, 529-542.
https://doi.org/10.1007/s10722-006-0009-1
[15]  Li, J., Yang, M., Li, Y., Jiang, M., Liu, C., He, M. and Wu, B. (2022) Chloroplast Genomes of Two Pueraria DC. Species: Sequencing, Comparative Analysis and Molecular Marker Development. FEBS Open Bio, 12, 349-361.
https://doi.org/10.1002/2211-5463.13335
[16]  Zhang, Z.Y., Tang, T.M., Zhu, P., et al. (2019) Characterization of the Complete Chloroplast Genome Sequence of Pueraria montana var. lobata and Its Phylogenetic Implications. Mitochondrial DNA Part B, 4, 1998-2000.
https://doi.org/10.1080/23802359.2019.1617085
[17]  Zhou, Y., Shang, X.H., Xiao, L., et al. (2023) Comparative Plastomes of Pueraria montana var. lobata (Leguminosae: Phaseoleae) and Closely Related Taxa: Insights into Phylogenomic Implications and Evolutionary Divergence. BMC Genomics, 24, Article No. 299.
https://doi.org/10.1186/s12864-023-09356-8
[18]  Sun, J., Wang, Y., Qiao, P., Zhang, L., Li, E., Dong, W., Zhao, Y. and Huang, L. (2023) Pueraria Montana Population Structure and Genetic Diversity Based on Chloroplast Genome Data. Plants, 12, Article 2231.
https://doi.org/10.3390/plants12122231
[19]  Dong, W.P., Xu, C., Li, D.L., Jin, X.B., Li, R.L., Lu, Q. and Suo, Z.L. (2016) Comparative Analysis of the Complete Chloroplast Genome Sequences in Psammophytic Haloxylon Species (Amaranthaceae). PeerJ, 4, e2699.
https://doi.org/10.7717/peerj.2699
[20]  Dong, W.P., Xu, C., Li, W.Q., Xie, X.M., Lu, Y.Z., Liu, Y.L., Jin, X.B. and Suo, Z.L. (2017) Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences. Frontiers in Plant Science, 8, Article 1148.
https://doi.org/10.3389/fpls.2017.01148
[21]  Xu, C., Dong, W.P., Li, W.Y., Lu, Y.Z., Xie, X.M., Jin, X.B., Shi, J.P., He, K.H. and Suo, Z.L. (2017) Comparative Analysis of Six Lagerstroemia Complete Chloroplast Genomes. Frontiers in Plant Science, 8, Article 15.
https://doi.org/10.3389/fpls.2017.00015
[22]  Li, W.Q., Liu, Y.L., Yang, Y., Xie, X.M., Lu, Y.Z., Yang, Z.R., Jin, X.B., Dong, W.P. and Suo, Z.L. (2018) Interspecific Chloroplast Genome Sequence Diversity and Genomic Resources in Diospyros. BMC Plant Biology, 18, Article No. 210.
https://doi.org/10.1186/s12870-018-1421-3
[23]  Dong, W.P., Xu, C., Liu, Y.L., Shi, J.P., Li, W.Y. and Suo, Z.L. (2021) Chloroplast Phylogenomics and Divergence Times of Lagerstroemia (Lythraceae). BMC Genomics, 22, Article No. 434.
https://doi.org/10.1186/s12864-021-07769-x
[24]  Guo, C., Liu, K.J., Li, E.Z., Chen, Y.F., He, J.Y., Li, W.Y., Dong, W.P. and Suo, Z.L. (2023) Maternal Donor and Genetic Variation of Lagerstroemia indica Cultivars. International Journal of Molecular Sciences, 24, Article 3606.
https://doi.org/10.3390/ijms24043606
[25]  Suo, Z.L., Zhang, C.H., Zheng, Y.Q., He, L.X., Jin, X.B., Hou, B.X. and Li, J.J. (2012) Revealing Genetic Diversity of Tree Peonies at Micro-Evolution Level with Hyper-Variable Chloroplast Markers and Floral Traits. Plant Cell Reports, 31, 2199-2213.
https://doi.org/10.1007/s00299-012-1330-0
[26]  Suo, Z.L., Chen, L.N., Pei, D., Jin, X.B. and Zhang, H.J. (2015) A New Nuclear DNA Marker from Ubiquitin Ligase Gene Region for Genetic Diversity Detection of Walnut Germplasm Resources. Biotechnology Reports, 5, 40-45.
https://doi.org/10.1016/j.btre.2014.11.003
[27]  李斌, 左云娟, 刘艳磊, 等. 基于叶绿体基因组的单核苷酸多态位点的落叶松属(Larix Mill.)植物的分子鉴定新方法[J]. 植物学研究, 2023, 12(4): 227-239.
https://doi.org/10.12677/br.2023.124030
[28]  刘美辰, 左云娟, 刘艳磊, 等. 基于叶绿体全基因组核苷酸变异位点的大豆属(Glycine Willd.)植物的分子鉴定新方法[J]. 植物学研究, 2024, 13(2): 124-142.
https://doi.org/10.12677/BR.2024.132015
[29]  刘美辰, 张建农, 左云娟, 等. 基于叶绿体全基因组序列变异位点的葫芦科植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(3): 289-314.
https://doi.org/10.12677/br.2024.133032
[30]  刘美辰, 左云娟, 靳晓白, 等. 基于叶绿体基因组变异位点的兰属(兰科)植物资源遗传多样性的分子鉴定新方法[J]. 计算生物学, 2024, 14(2): 13-28.
https://doi.org/10.12677/hjcb.2024.142002
[31]  刘美辰, 李斌, 左云娟, 等. 基于质体基因组序列变异位点的松科油杉属和冷杉属植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(4): 434-445.
https://doi.org/10.12677/br.2024.134046
[32]  刘美辰, 刘一心, 左云娟, 等. 基于叶绿体基因组变异位点的百合属(百合科)植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(4): 469-486.
https://doi.org/10.12677/br.2024.134050
[33]  Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772-780.
https://doi.org/10.1093/molbev/mst010
[34]  Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[35]  Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado P., Ramos-Onsins, S.E. and Sánchez-Gracia, A. (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34, 3299-3302.
https://doi.org/10.1093/molbev/msx248
[36]  Goodwin, Z.A., Harris, D.J., Filer, D., Wood, J.R.I. and Scotland, R.W. (2015) Wide Spread Mistaken Identity in Tropical Plant Collections. Current Biology, 25, R1057-R1069.
https://doi.org/10.1016/j.cub.2015.10.002
[37]  洪德元. 生物多样性事业需要科学、可操作的物种概念[J]. 生物多样性, 2016, 24(9): 979-999.
[38]  王文采, 等. 世界植物简志[M]. 北京: 北京出版集团北京出版社, 2021: 1-172.
[39]  朱旭, 李嘉奇. 全球协同落实《昆明-蒙特利尔全球生物多样性框架》的挑战与出路: 基于SFIC模型的分析[J]. 生物多样性, 31(8): 23167.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133