|
骨髓间充质干细胞成骨分化在口腔医学中的应用
|
Abstract:
来源于中胚层的骨髓间充质干细胞(BMSCs),能够进行自我更新,从而实现多种不同的发育方式。由于其易于体外扩增和外源基因导入等优点,在骨缺损修复中具有广阔的应用前景。近年来,随着组织工程学理论和技术的不断进步,将BMSCs应用于颌骨缺损修复中取得了卓越的成果,改善了颌骨缺损的治愈效果。基于此,本文对骨髓间充质干细胞在口腔医学领域的应用和疗效作一综述,以期为临床医生提供更加科学的理论依据。
Bone marrow mesenchymal stem cells (BMSCs) deriving from the mesoderm can self-renew and achieve a variety of different development modes. Because of its advantages of easy in vitro expansion and foreign gene introduction, it has a broad application prospect in bone defect repair. In recent years, with the continuous progress of tissue engineering theory and technology, the application of BMSCs in jaw defect repair has achieved excellent results and improved the healing effect of jaw defect. Based on this, this paper reviews the application and efficacy of bone marrow mesenchymal stem cells in stomatology, in order to provide more scientific theoretical basis for clinicians.
[1] | Casado-Díaz, A., Santiago-Mora, R., Jiménez, R., Caballero-Villarraso, J., Herrera, C., Torres, A., et al. (2008) Cryopreserved Human Bone Marrow Mononuclear Cells as a Source of Mesenchymal Stromal Cells: Application in Osteoporosis Research. Cytotherapy, 10, 460-468. https://doi.org/10.1080/14653240802192644 |
[2] | Zhang, X., Jiang, X., Jiang, S., Cai, X., Yu, S. and Pei, G. (2021) Schwann Cells Promote Prevascularization and Osteogenesis of Tissue-Engineered Bone via Bone Marrow Mesenchymal Stem Cell-Derived Endothelial Cells. Stem Cell Research & Therapy, 12, Article No. 382. https://doi.org/10.1186/s13287-021-02433-3 |
[3] | Pirosa, A., Gottardi, R., Alexander, P.G. and Tuan, R.S. (2018) Engineering In-Vitro Stem Cell-Based Vascularized Bone Models for Drug Screening and Predictive Toxicology. Stem Cell Research & Therapy, 9, Article No. 112. https://doi.org/10.1186/s13287-018-0847-8 |
[4] | Weng, Y., Wang, Z., Sun, J., Han, L., Li, X., Wu, B., et al. (2021) Engineering of Axially Vascularized Bone Tissue Using Natural Coral Scaffold and Osteogenic Bone Marrow Mesenchymal Stem Cell Sheets. Journal of Stomatology, Oral and Maxillofacial Surgery, 122, 397-404. https://doi.org/10.1016/j.jormas.2021.01.013 |
[5] | Xian, H., Luo, D., Wang, L., Cheng, W., Zhai, W., Lian, K., et al. (2020) Platelet-Rich Plasma-Incorporated Autologous Granular Bone Grafts Improve Outcomes of Post-Traumatic Osteonecrosis of the Femoral Head. The Journal of Arthroplasty, 35, 325-330. https://doi.org/10.1016/j.arth.2019.09.001 |
[6] | 李焕萍, 刘春蓉, 张永亮. 骨髓间充质干细胞在医学领域中的研究与应用[J]. 中国组织工程研究, 2007, 11(28): 5622-5625. |
[7] | Friedenstein, A.J., Piatetzky-Shapiro, I.I. and Petrakova, K.V. (1966) Osteogenesis in Transplants of Bone Marrow Cells. Development, 16, 381-390. https://doi.org/10.1242/dev.16.3.381 |
[8] | Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I. and Frolova, G.P. (1968) Heterotopic Transplants of Bone Marrow. Transplantation, 6, 230-247. https://doi.org/10.1097/00007890-196803000-00009 |
[9] | Kuznetsov, S.A., Krebsbach, P.H., Satomura, K., Kerr, J., Riminucci, M., Benayahu, D., et al. (1997) Single-Colony Derived Strains of Human Marrow Stromal Fibroblasts Form Bone After Transplantation in Vivo. Journal of Bone and Mineral Research, 12, 1335-1347. https://doi.org/10.1359/jbmr.1997.12.9.1335 |
[10] | Hoch, A.I. and Leach, J.K. (2014) Concise Review: Optimizing Expansion of Bone Marrow Mesenchymal Stem/Stromal Cells for Clinical Applications. Stem Cells Translational Medicine, 3, 643-652. https://doi.org/10.5966/sctm.2013-0196 |
[11] | Nicodemou, A. and Danisovic, L. (2017) Mesenchymal Stromal/stem Cell Separation Methods: Concise Review. Cell and Tissue Banking, 18, 443-460. https://doi.org/10.1007/s10561-017-9658-x |
[12] | Deryugina, E.I. and Muller-Sieburg, C.E. (1993) Stromal Cells in Long Term Cultures to the Elucidation of Hematoporetic Development. Critical Reviews in Immunology, 13, 115-150. |
[13] | Meppelink, A.M., Wang, X., Bradica, G., Barron, K., Hiltz, K., Liu, X., et al. (2016) Rapid Isolation of Bone Marrow Mesenchymal Stromal Cells Using Integrated Centrifuge-Based Technology. Cytotherapy, 18, 729-739. https://doi.org/10.1016/j.jcyt.2016.03.291 |
[14] | 李强强, 谢亚东, 张怀斌, 等. SD大鼠骨髓间充质干细胞分离培养及鉴定的实验研究[J]. 现代生物医学进展, 2021, 21(13): 2410-2414, 2446. |
[15] | 胡超然, 邱冰, 周祝兴, 等. 3D打印聚己内酯/纳米羟基磷灰石复合支架与骨髓间充质干细胞的体外生物相容性[J]. 中国组织工程研究, 2020, 24(4): 589-595. |
[16] | 陈燕, 姜胜军, 彭友俭. 骨髓间充质干细胞来源的外泌体对成骨细胞增殖和分化的影响[J]. 口腔医学研究, 2019, 35(4): 401-404. |
[17] | Langenbach, F. and Handschel, J. (2013) Effects of Dexamethasone, Ascorbic Acid and β-Glycerophosphate on the Osteogenic Differentiation of Stem Cells in Vitro. Stem Cell Research & Therapy, 4, Article No. 117. https://doi.org/10.1186/scrt328 |
[18] | Lin, Z., Wang, J., Lin, L., Zhang, J., Liu, Y., Shuai, M., et al. (2013) Effects of BMP2 and VEGF165 on the Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. Experimental and Therapeutic Medicine, 7, 625-629. https://doi.org/10.3892/etm.2013.1464 |
[19] | 张科强, 刘一, 王宝刚, 等. 体外冲击波诱导骨髓间充质干细胞向成骨细胞转化过程中c-fos、c-jun的表达[J]. 山东医药, 2008, 48(4): 63-64. |
[20] | 胡炜, 俞兴, 徐林. 骨髓基质细胞诱导分化成骨方法及相关研究进展[J]. 中国组织工程研究与临床康复, 2009, 13(1): 169-172. |
[21] | 胡孝丽, 王佳宇, 余和东, 等. 大鼠胎鼠成骨细胞的培养及初步鉴定[J]. 临床口腔医学杂志, 2016, 32(4): 207-210. |
[22] | Tang, X.K., Cheng, W., Xu, B., et al. (2013) Experimental Study on the Isolated Culture of Osteoeytes and Identification of Osteoblasts in Rats. Chinese Journal of Traumatology, 26, 227-231. |
[23] | Xu, L.L., Sun, X.J., Hao, X.X., et al. (2015) Osteogenic Induction of Human Bone Marrow Mesenchymal Stem Cells Cultured in Complex Medium. Journal of Clinical Rehabilitative Tissue Engineering Research, 19, 1501-1505. |
[24] | 景彩霞, 刘昌奎, 谭新颖, 等. 骨髓间充质干细胞与同种异体骨复合修复犬下颌骨缺损: 成骨能力检测[J]. 中国组织工程研究, 2015(14): 2138-2143. |
[25] | Osugi, M., Katagiri, W., Yoshimi, R., Inukai, T., Hibi, H. and Ueda, M. (2012) Conditioned Media from Mesenchymal Stem Cells Enhanced Bone Regeneration in Rat Calvarial Bone Defects. Tissue Engineering Part A, 18, 1479-1489. https://doi.org/10.1089/ten.tea.2011.0325 |
[26] | 孙琦, 王丽霞, 吕继连. 骨髓间充质干细胞对大鼠牙槽骨缺损再生修复的影响[J]. 中华老年口腔医学杂志, 2022, 20(4): 193-197. |
[27] | Jiang, Y.H., Shang, Y., Zou, D.H., et al. (2022) Effect of Rat Allogeneic BMSCs-Bio-Oss-bFGF Compound on Tooth Extraction Healing: A Micro-CT Study. Shanghai Journal of Stomatology, 31, 38-43. |
[28] | Behnia, H., Khojasteh, A., Soleimani, M., Tehranchi, A., Khoshzaban, A., Keshel, S.H., et al. (2009) Secondary Repair of Alveolar Clefts Using Human Mesenchymal Stem Cells. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 108, e1-e6. https://doi.org/10.1016/j.tripleo.2009.03.040 |
[29] | Behnia, H., Khojasteh, A., Soleimani, M., Tehranchi, A. and Atashi, A. (2012) Repair of Alveolar Cleft Defect with Mesenchymal Stem Cells and Platelet Derived Growth Factors: A Preliminary Report. Journal of Cranio-Maxillofacial Surgery, 40, 2-7. https://doi.org/10.1016/j.jcms.2011.02.003 |
[30] | Gómez-Florit, M., Monjo, M. and Ramis, J.M. (2015) Quercitrin for Periodontal Regeneration: Effects on Human Gingival Fibroblasts and Mesenchymal Stem Cells. Scientific Reports, 5, Article No. 16593. https://doi.org/10.1038/srep16593 |
[31] | Liu, L., Guo, S., Shi, W., Liu, Q., Huo, F., Wu, Y., et al. (2021) Bone Marrow Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Promote Periodontal Regeneration. Tissue Engineering Part A, 27, 962-976. https://doi.org/10.1089/ten.tea.2020.0141 |
[32] | Yamada, Y., Hara, K., Nakamura, S., Ueda, M., Ito, K. and Nagasaka, T. (2013) Minimally Invasive Approach with Tissue Engineering for Severe Alveolar Bone Atrophy Case. International Journal of Oral and Maxillofacial Surgery, 42, 260-263. https://doi.org/10.1016/j.ijom.2012.07.003 |
[33] | 刘茜, 周炜, 刘欢, 等. 骨髓间充质干细胞细胞膜片复合富血小板血浆促进种植体周围骨组织再生的研究[J]. 实用口腔医学杂志, 2018, 34(2): 206-210. |
[34] | Jose, A., Coco, B.J., Milligan, S., Young, B., Lappin, D.F., Bagg, J., et al. (2010) Reducing the Incidence of Denture Stomatitis: Are Denture Cleansers Sufficient? Journal of Prosthodontics, 19, 252-257. https://doi.org/10.1111/j.1532-849x.2009.00561.x |
[35] | Du, Z., Wei, C., Cheng, K., Han, B., Yan, J., Zhang, M., et al. (2013) Mesenchymal Stem Cell-Conditioned Medium Reduces Liver Injury and Enhances Regeneration in Reduced-Size Rat Liver Transplantation. Journal of Surgical Research, 183, 907-915. https://doi.org/10.1016/j.jss.2013.02.009 |