全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

化疗诱导的周围神经病变生物标志物研究进展
Progress in Research on Biomarkers of Chemotherapy-Induced Peripheral Neuropathy

DOI: 10.12677/acm.2024.1482261, PP. 630-640

Keywords: 化疗诱导的周围神经病变,生物标志物,研究进展
Chemotherapy-Induced Peripheral Neuropathy
, Biomarker, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

化疗诱导的周围神经毒性(CIPN)是化疗药物常见的不良反应。CIPN可能涉及周围神经系统的多个区域,从自主神经和背根神经节(DRG)到轴突和任何周围神经纤维类型。大直径感觉髓鞘纤维(Aβ)常受累,但运动纤维、小髓鞘纤维(Aδ)、无髓鞘纤维(C)或自主神经纤维也可能受累。在此,我们回顾了目前临床和实验环境中CIPN评估技术的证据。神经传导研究(NCS)可用于亚临床和早期CIPN阶段,以评估大神经纤维损伤的程度并监测长期预后,其中腓肠或腓肠背神经是最值得研究的。定量的感觉神经学检查与NCS一起提供了有价值的数据。定量感觉测试和神经兴奋性研究增加了病理生理学方面的信息。神经MRI和高分辨率超声可提供神经肿大、神经信号强度增加和DRG或脊髓改变的信息。表皮内电刺激可以揭示NCS无法检测到的小无髓神经纤维的损伤程度。分子成像技术科应用于临床前高通量药物筛选。光体积描记术提示血管生理测试或许也是一种评估手段。因此,推荐使用多模态测试作为最佳CIPN评估策略,采用客观NCS和其他专业技术以及患者主观报告的结果测量。
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common adverse reaction to chemotherapeutic drugs. CIPN may involve multiple regions of the peripheral nervous system, ranging from the autonomic nerves and dorsal root ganglia (DRG) to the axons and any type of peripheral nerve fibers. Large-diameter sensory myelinated fibers (Aβ) are often affected, but motor fibers, small myelinated fibers (Aδ), unmyelinated fibers (C), or autonomic nerve fibers may also be involved. Here, we review the evidence for CIPN assessment techniques in current clinical and experimental settings. Nerve conduction studies (NCS) can be utilized in the subclinical and early stages of CIPN to assess the extent of large nerve fiber damage and monitor long-term prognosis, with the sural or sural dorsal nerves being the most worthy of study. Quantitative sensory neurological examinations provide valuable data alongside NCS. Quantitative sensory testing and nerve excitability studies add information regarding pathophysiology. Neuroimaging techniques such as nerve MRI and high-resolution ultrasound can provide information on nerve enlargement, increased nerve signal intensity, and changes in the DRG or spinal cord. Intraepidermal electrical stimulation can reveal the extent of damage to small unmyelinated nerve fibers undetectable by NCS. Molecular imaging techniques can be applied in preclinical high-throughput drug screening. Photoplethysmography suggests that vascular physiological testing may also be an assessment tool. Therefore, multimodal testing is recommended as the optimal CIPN assessment strategy, using objective NCS and other specialized techniques as well as patient subjectively reported outcome measures.

References

[1]  Park, S.B., Goldstein, D., Krishnan, A.V., Lin, C.S., Friedlander, M.L., Cassidy, J., et al. (2013) Chemotherapy‐Induced Peripheral Neurotoxicity: A Critical Analysis. CA: A Cancer Journal for Clinicians, 63, 419-437.
https://doi.org/10.3322/caac.21204
[2]  Yoshino, T., Kotaka, M., Shinozaki, K., Touyama, T., Manaka, D., Matsui, T., et al. (2019) JOIN Trial: Treatment Outcome and Recovery Status of Peripheral Sensory Neuropathy during a 3-Year Follow-up in Patients Receiving Modified FOLFOX6 as Adjuvant Treatment for Stage II/III Colon Cancer. Cancer Chemotherapy and Pharmacology, 84, 1269-1277.
https://doi.org/10.1007/s00280-019-03957-5
[3]  Brown, T.J., Sedhom, R. and Gupta, A. (2019) Chemotherapy-Induced Peripheral Neuropathy. JAMA Oncology, 5, 750.
https://doi.org/10.1001/jamaoncol.2018.6771
[4]  Ezendam, N.P.M., Pijlman, B., Bhugwandass, C., Pruijt, J.F.M., Mols, F., Vos, M.C., et al. (2014) Chemotherapy-Induced Peripheral Neuropathy and Its Impact on Health-Related Quality of Life among Ovarian Cancer Survivors: Results from the Population-Based PROFILES Registry. Gynecologic Oncology, 135, 510-517.
https://doi.org/10.1016/j.ygyno.2014.09.016
[5]  Pike, C.T., Birnbaum, H.G., Muehlenbein, C.E., Pohl, G.M. and Natale, R.B. (2012) Healthcare Costs and Workloss Burden of Patients with Chemotherapy-Associated Peripheral Neuropathy in Breast, Ovarian, Head and Neck, and Nonsmall Cell Lung Cancer. Chemotherapy Research and Practice, 2012, Article 913848.
https://doi.org/10.1155/2012/913848
[6]  Vasan, R.S. (2006) Biomarkers of Cardiovascular Disease: Molecular Basis and Practical Considerations. Circulation, 113, 2335-2362.
https://doi.org/10.1161/circulationaha.104.482570
[7]  Naylor, S. (2003) Biomarkers: Current Perspectives and Future Prospects. Expert Review of Molecular Diagnostics, 3, 525-529.
https://doi.org/10.1586/14737159.3.5.525
[8]  Karley, D., Gupta, D. and Tiwari, A. (2011) Biomarker for Cancer: A Great Promise for Future. World Journal of Oncology, 2, 151-157.
[9]  McDonald, E.S. and Windebank, A.J. (2002) Cisplatin-Induced Apoptosis of DRG Neurons Involves Bax Redistribution and Cytochrome cRelease but Not Fas Receptor Signaling. Neurobiology of Disease, 9, 220-233.
https://doi.org/10.1006/nbdi.2001.0468
[10]  Dasari, S. and Bernard Tchounwou, P. (2014) Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. European Journal of Pharmacology, 740, 364-378.
https://doi.org/10.1016/j.ejphar.2014.07.025
[11]  Webster, R.G., Brain, K.L., Wilson, R.H., Grem, J.L. and Vincent, A. (2005) Oxaliplatin Induces Hyperexcitability at Motor and Autonomic Neuromuscular Junctions through Effects on Voltage‐Gated Sodium Channels. British Journal of Pharmacology, 146, 1027-1039.
https://doi.org/10.1038/sj.bjp.0706407
[12]  McKeage, M.J., Hsu, T., Screnci, D., Haddad, G. and Baguley, B.C. (2001) Nucleolar Damage Correlates with Neurotoxicity Induced by Different Platinum Drugs. British Journal of Cancer, 85, 1219-1225.
https://doi.org/10.1054/bjoc.2001.2024
[13]  Cersosimo, R.J. (2005) Oxaliplatin-Associated Neuropathy: A Review. Annals of Pharmacotherapy, 39, 128-135.
https://doi.org/10.1345/aph.1e319
[14]  Gordon-Williams, R. and Farquhar-Smith, P. (2020) Recent Advances in Understanding Chemotherapy-Induced Peripheral Neuropathy. F1000Research, 9, Article 177.
https://doi.org/10.12688/f1000research.21625.1
[15]  Fuglsang-Frederiksen, A. and Pugdahl, K. (2011) Current Status on Electrodiagnostic Standards and Guidelines in Neuromuscular Disorders. Clinical Neurophysiology, 122, 440-455.
https://doi.org/10.1016/j.clinph.2010.06.025
[16]  Thawani, S.P., Tanji, K., De Sousa, E.A., Weimer, L.H. and Brannagan, T.H. (2015) Bortezomib-Associated Demyelinating Neuropathy—Clinical and Pathologic Features. Journal of Clinical Neuromuscular Disease, 16, 202-209.
https://doi.org/10.1097/cnd.0000000000000077
[17]  Argyriou, A.A., Polychronopoulos, P., Koutras, A., Iconomou, G., Iconomou, A., Kalofonos, H.P., et al. (2005) Peripheral Neuropathy Induced by Administration of Cisplatin-and Paclitaxel-Based Chemotherapy. Could It Be Predicted? Supportive Care in Cancer, 13, 647-651.
https://doi.org/10.1007/s00520-005-0776-9
[18]  Velasco, R., Bruna, J., Briani, C., Argyriou, A.A., Cavaletti, G., Alberti, P., et al. (2013) Early Predictors of Oxaliplatin-Induced Cumulative Neuropathy in Colorectal Cancer Patients. Journal of Neurology, Neurosurgery & Psychiatry, 85, 392-398.
https://doi.org/10.1136/jnnp-2013-305334
[19]  Dalla Torre, C., Zambello, R., Cacciavillani, M., Campagnolo, M., Berno, T., Salvalaggio, A., et al. (2016) Lenalidomide Long-Term Neurotoxicity: Clinical and Neurophysiologic Prospective Study. Neurology, 87, 1161-1166.
https://doi.org/10.1212/wnl.0000000000003093
[20]  Alberti, P., Rossi, E., Argyriou, A.A., Kalofonos, H.P., Briani, C., Cacciavillani, M., et al. (2018) Risk Stratification of Oxaliplatin Induced Peripheral Neurotoxicity Applying Electrophysiological Testing of Dorsal Sural Nerve. Supportive Care in Cancer, 26, 3143-3151.
https://doi.org/10.1007/s00520-018-4170-9
[21]  Wang, M., Bandla, A., Sundar, R. and Molassiotis, A. (2022) The Phenotype and Value of Nerve Conduction Studies in Measuring Chemotherapy-Induced Peripheral Neuropathy: A Secondary Analysis of Pooled Data. European Journal of Oncology Nursing, 60, Article 102196.
https://doi.org/10.1016/j.ejon.2022.102196
[22]  Mücke, M., Cuhls, H., Radbruch, L., Baron, R., Maier, C., Tölle, T., et al. (2016) Quantitative Sensory Testing (QST). English Version. Der Schmerz, 35, 153-160.
https://doi.org/10.1007/s00482-015-0093-2
[23]  Zhi, W.I., Baser, R.E., Kwon, A., Chen, C., Li, S.Q., Piulson, L., et al. (2021) Characterization of Chemotherapy-Induced Peripheral Neuropathy Using Patient-Reported Outcomes and Quantitative Sensory Testing. Breast Cancer Research and Treatment, 186, 761-768.
https://doi.org/10.1007/s10549-020-06079-2
[24]  Forsyth, P.A., Balmaceda, C., Peterson, K., Seidman, A.D., Brasher, P. and Deangelis, L.M. (1997) Prospective Study of Paclitaxel-Induced Peripheral Neuropathy with Quantitative Sensory Testing. Journal of Neuro-Oncology, 35, 47-53.
https://doi.org/10.1023/a:1005805907311
[25]  Krøigård, T., Schrøder, H.D., Qvortrup, C., Eckhoff, L., Pfeiffer, P., Gaist, D., et al. (2014) Characterization and Diagnostic Evaluation of Chronic Polyneuropathies Induced by Oxaliplatin and Docetaxel Comparing Skin Biopsy to Quantitative Sensory Testing and Nerve Conduction Studies. European Journal of Neurology, 21, 623-629.
https://doi.org/10.1111/ene.12353
[26]  Hershman, D.L., Weimer, L.H., Wang, A., Kranwinkel, G., Brafman, L., Fuentes, D., et al. (2010) Association between Patient Reported Outcomes and Quantitative Sensory Tests for Measuring Long-Term Neurotoxicity in Breast Cancer Survivors Treated with Adjuvant Paclitaxel Chemotherapy. Breast Cancer Research and Treatment, 125, 767-774.
https://doi.org/10.1007/s10549-010-1278-0
[27]  Reddy, S.M., Vergo, M.T., Paice, J.A., Kwon, N., Helenowski, I.B., Benson, A.B., et al. (2016) Quantitative Sensory Testing at Baseline and during Cycle 1 Oxaliplatin Infusion Detects Subclinical Peripheral Neuropathy and Predicts Clinically Overt Chronic Neuropathy in Gastrointestinal Malignancies. Clinical Colorectal Cancer, 15, 37-46.
https://doi.org/10.1016/j.clcc.2015.07.001
[28]  Krøigård, T., Svendsen, T.K., Wirenfeldt, M., Schrøder, H.D., Qvortrup, C., Pfeiffer, P., et al. (2021) Oxaliplatin Neuropathy: Predictive Values of Skin Biopsy, QST and Nerve Conduction. Journal of Neuromuscular Diseases, 8, 679-688.
https://doi.org/10.3233/jnd-210630
[29]  Velasco, R., Videla, S., Villoria, J., Ortiz, E., Navarro, X. and Bruna, J. (2014) Reliability and Accuracy of Quantitative Sensory Testing for Oxaliplatin-Induced Neurotoxicity. Acta Neurologica Scandinavica, 131, 282-289.
https://doi.org/10.1111/ane.12331
[30]  Lieber, S., Blankenburg, M., Apel, K., Hirschfeld, G., Hernáiz Driever, P. and Reindl, T. (2018) Small-Fiber Neuropathy and Pain Sensitization in Survivors of Pediatric Acute Lymphoblastic Leukemia. European Journal of Paediatric Neurology, 22, 457-469.
https://doi.org/10.1016/j.ejpn.2017.12.019
[31]  Cata, J.P., Weng, H., Burton, A.W., Villareal, H., Giralt, S. and Dougherty, P.M. (2007) Quantitative Sensory Findings in Patients with Bortezomib-Induced Pain. The Journal of Pain, 8, 296-306.
https://doi.org/10.1016/j.jpain.2006.09.014
[32]  Marstrand, S.D., Buch-Larsen, K., Andersson, M., Jensen, L.T. and Schwarz, P. (2021) Heart Rate Variability and Vibration Perception Threshold to Assess Chemotherapy-Induced Neuropathy in Women with Breast Cancer—A Systematic Review. Cancer Treatment and Research Communications, 26, Article 100295.
https://doi.org/10.1016/j.ctarc.2020.100295
[33]  Cavaletti, G., Cornblath, D.R., Merkies, I.S.J., Postma, T.J., Rossi, E., Alberti, P., et al. (2019) Patients’ and Physicians’ Interpretation of Chemotherapy‐Induced Peripheral Neurotoxicity. Journal of the Peripheral Nervous System, 24, 111-119.
https://doi.org/10.1111/jns.12306
[34]  Hill, A., Bergin, P., Hanning, F., Thompson, P., Findlay, M., Damianovich, D., et al. (2010) Detecting Acute Neurotoxicity during Platinum Chemotherapy by Neurophysiological Assessment of Motor Nerve Hyperexcitability. BMC Cancer, 10, Article No. 451.
https://doi.org/10.1186/1471-2407-10-451
[35]  Park, S.B., Lin, C.S.-., Krishnan, A.V., Goldstein, D., Friedlander, M.L. and Kiernan, M.C. (2009) Oxaliplatin-Induced Neurotoxicity: Changes in Axonal Excitability Precede Development of Neuropathy. Brain, 132, 2712-2723.
https://doi.org/10.1093/brain/awp219
[36]  Park, S.B., Lin, C.S.-Y., Krishnan, A.V., Goldstein, D., Friedlander, M.L. and Kiernan, M.C. (2011) Utilizing Natural Activity to Dissect the Pathophysiology of Acute Oxaliplatin-Induced Neuropathy. Experimental Neurology, 227, 120-127.
https://doi.org/10.1016/j.expneurol.2010.10.002
[37]  Park, S.B., Lin, C.S.‐Y., Krishnan, A.V., Friedlander, M.L., Lewis, C.R. and Kiernan, M.C. (2010) Early, Progressive, and Sustained Dysfunction of Sensory Axons Underlies Paclitaxel‐Induced Neuropathy. Muscle & Nerve, 43, 367-374.
https://doi.org/10.1002/mus.21874
[38]  Nasu, S., Misawa, S., Nakaseko, C., Shibuya, K., Isose, S., Sekiguchi, Y., et al. (2014) Bortezomib-Induced Neuropathy: Axonal Membrane Depolarization Precedes Development of Neuropathy. Clinical Neurophysiology, 125, 381-387.
https://doi.org/10.1016/j.clinph.2013.07.014
[39]  Kukidome, D., Nishikawa, T., Sato, M., Igata, M., Kawashima, J., Shimoda, S., et al. (2015) Measurement of Small Fibre Pain Threshold Values for the Early Detection of Diabetic Polyneuropathy. Diabetic Medicine, 33, 62-69.
https://doi.org/10.1111/dme.12797
[40]  Oyama, F., Futagami, M., Oikiri, H., Takabayashi, A., Akaishi, A., Kodama, T., et al. (2020) Quantitative Evaluation of Chemotherapy-Induced Peripheral Neuropathy by Using Intraepidermal Electrical Stimulation. Molecular and Clinical Oncology, 13, 169-174.
https://doi.org/10.3892/mco.2020.2056
[41]  Sato, J., Mori, M., Nihei, S., Takeuchi, S., Kashiwaba, M. and Kudo, K. (2017) Objective Evaluation of Chemotherapy-Induced Peripheral Neuropathy Using Quantitative Pain Measurement System (Pain Vision®), a Pilot Study. Journal of Pharmaceutical Health Care and Sciences, 3, Article No. 21.
https://doi.org/10.1186/s40780-017-0089-4
[42]  Inui, K. and Kakigi, R. (2011) Pain Perception in Humans: Use of Intraepidermal Electrical Stimulation: Figure 1. Journal of Neurology, Neurosurgery & Psychiatry, 83, 551-556.
https://doi.org/10.1136/jnnp-2011-301484
[43]  Zaidman, C.M., Al‐Lozi, M. and Pestronk, A. (2009) Peripheral Nerve Size in Normals and Patients with Polyneuropathy: An Ultrasound Study. Muscle & Nerve, 40, 960-966.
https://doi.org/10.1002/mus.21431
[44]  Briani, C., Campagnolo, M., Lucchetta, M., Cacciavillani, M., Dalla Torre, C., Granata, G., et al. (2012) Ultrasound Assessment of Oxaliplatin‐Induced Neuropathy and Correlations with Neurophysiologic Findings. European Journal of Neurology, 20, 188-192.
https://doi.org/10.1111/j.1468-1331.2012.03852.x
[45]  Pitarokoili, K., Höffken, N., Lönneker, N., Fisse, A.L., Trampe, N., Gold, R., et al. (2018) Prospective Study of the Clinical, Electrophysiologic, and Sonographic Characteristics of Oxaliplatin‐Induced Neuropathy. Journal of Neuroimaging, 29, 133-139.
https://doi.org/10.1111/jon.12557
[46]  Lycan, T.W., Hsu, F., Ahn, C.S., Thomas, A., Walker, F.O., Sangueza, O.P., et al. (2020) Neuromuscular Ultrasound for Taxane Peripheral Neuropathy in Breast Cancer. Muscle & Nerve, 61, 587-594.
https://doi.org/10.1002/mus.26833
[47]  Chen, Y., Haacke, E.M. and Li, J. (2019) Peripheral Nerve Magnetic Resonance Imaging. F1000Research, 8, Article 1803.
https://doi.org/10.12688/f1000research.19695.1
[48]  Phillips, L., Chhabra, A. and Trivedi, J. (2015) Hereditary and Acquired Polyneuropathy Conditions of the Peripheral Nerves: Clinical Considerations and MR Neurography Imaging. Seminars in Musculoskeletal Radiology, 19, 130-136.
https://doi.org/10.1055/s-0035-1545076
[49]  Ravaglia, S., Corso, A., Piccolo, G., Lozza, A., Alfonsi, E., Mangiacavalli, S., et al. (2008) Immune-Mediated Neuropathies in Myeloma Patients Treated with Bortezomib. Clinical Neurophysiology, 119, 2507-2512.
https://doi.org/10.1016/j.clinph.2008.08.007
[50]  Apostolidis, L., Schwarz, D., Xia, A., Weiler, M., Heckel, A., Godel, T., et al. (2017) Dorsal Root Ganglia Hypertrophy as in vivo Correlate of Oxaliplatin-Induced Polyneuropathy. PLOS ONE, 12, e0183845.
https://doi.org/10.1371/journal.pone.0183845
[51]  Gimber, L.H., Garland, L., Krupinski, E.A., Chadaz, T.S., Schwenk, M., Najafi, B., et al. (2019) Diffusion Tensor Imaging of the Ankle as a Possible Predictor of Chemotherapy Induced Peripheral Neuropathy: Pilot Study. Current Problems in Diagnostic Radiology, 48, 121-126.
https://doi.org/10.1067/j.cpradiol.2017.12.012
[52]  Isoardo, G., Bergui, M., Durelli, L., Barbero, P., Boccadoro, M., Bertola, A., et al. (2003) Thalidomide Neuropathy: Clinical, Electrophysiological and Neuroradiological Features. Acta Neurologica Scandinavica, 109, 188-193.
https://doi.org/10.1034/j.1600-0404.2003.00203.x
[53]  Boland, E.G., Selvarajah, D., Hunter, M., Ezaydi, Y., Tesfaye, S., Ahmedzai, S.H., et al. (2014) Central Pain Processing in Chronic Chemotherapy-Induced Peripheral Neuropathy: A Functional Magnetic Resonance Imaging Study. PLOS ONE, 9, e96474.
https://doi.org/10.1371/journal.pone.0096474
[54]  Hu, L. and Iannetti, G.D. (2016) Issues in Pain Prediction—Beyond Pain and Gain. Trends in Neurosciences, 39, 640-642.
https://doi.org/10.1016/j.tins.2016.08.006
[55]  Müller, J., Wunder, A. and Licha, K. (2012) Optical Imaging. In: Schober, O. and Riemann, B., Eds., Molecular Imaging in Oncology, Springer, 221-246.
https://doi.org/10.1007/978-3-642-10853-2_7
[56]  Liu, J., Huang, J., Wei, X., Cheng, P. and Pu, K. (2023) Near‐Infrared Chemiluminescence Imaging of Chemotherapy‐Induced Peripheral Neuropathy. Advanced Materials, 36, Article 2310605.
https://doi.org/10.1002/adma.202310605
[57]  Berntson, G.G., Thomas BIGGER, J., Eckberg, D.L., Grossman, P., Kaufmann, P.G., Malik, M., et al. (1997) Heart Rate Variability: Origins, Methods, and Interpretive Caveats. Psychophysiology, 34, 623-648.
https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
[58]  Adams, S.C., Schondorf, R., Benoit, J. and Kilgour, R.D. (2015) Impact of Cancer and Chemotherapy on Autonomic Nervous System Function and Cardiovascular Reactivity in Young Adults with Cancer: A Case-Controlled Feasibility Study. BMC Cancer, 15, Article No. 414.
https://doi.org/10.1186/s12885-015-1418-3
[59]  Argyriou, A.A., Koutras, A., Polychronopoulos, P., Papapetropoulos, S., Iconomou, G., Katsoulas, G., et al. (2005) The Impact of Paclitaxel or Cisplatin‐Based Chemotherapy on Sympathetic Skin Response: A Prospective Study. European Journal of Neurology, 12, 858-861.
https://doi.org/10.1111/j.1468-1331.2005.01086.x
[60]  Saad, M., Psimaras, D., Tafani, C., Sallansonnet-Froment, M., Calvet, J., Vilier, A., et al. (2016) Quick, Non-Invasive and Quantitative Assessment of Small Fiber Neuropathy in Patients Receiving Chemotherapy. Journal of Neuro-Oncology, 127, 373-380.
https://doi.org/10.1007/s11060-015-2049-x
[61]  Carney, R.M., Blumenthal, J.A., Stein, P.K., Watkins, L., Catellier, D., Berkman, L.F., et al. (2001) Depression, Heart Rate Variability, and Acute Myocardial Infarction. Circulation, 104, 2024-2028.
https://doi.org/10.1161/hc4201.097834
[62]  Carozzi, V.A., Canta, A. and Chiorazzi, A. (2015) Chemotherapy-Induced Peripheral Neuropathy: What Do We Know about Mechanisms? Neuroscience Letters, 596, 90-107.
https://doi.org/10.1016/j.neulet.2014.10.014
[63]  Nahman‐Averbuch, H., Granovsky, Y., Sprecher, E., Steiner, M., Tzuk‐Shina, T., Pud, D., et al. (2013) Associations between Autonomic Dysfunction and Pain in Chemotherapy‐Induced Polyneuropathy. European Journal of Pain, 18, 47-55.
https://doi.org/10.1002/j.1532-2149.2013.00349.x
[64]  Dermitzakis, E.V., Kimiskidis, V.K., Eleftheraki, A., Lazaridis, G., Konstantis, A., Basdanis, G., et al. (2014) The Impact of Oxaliplatin‐Based Chemotherapy for Colorectal Cancer on the Autonomous Nervous System. European Journal of Neurology, 21, 1471-1477.
https://doi.org/10.1111/ene.12514
[65]  Elgendi, M. (2012) On the Analysis of Fingertip Photoplethysmogram Signals. Current Cardiology Reviews, 8, 14-25.
https://doi.org/10.2174/157340312801215782
[66]  Cameron, A.C., Touyz, R.M. and Lang, N.N. (2016) Vascular Complications of Cancer Chemotherapy. Canadian Journal of Cardiology, 32, 852-862.
https://doi.org/10.1016/j.cjca.2015.12.023
[67]  Herrmann, J., Yang, E.H., Iliescu, C.A., Cilingiroglu, M., Charitakis, K., Hakeem, A., et al. (2016) Vascular Toxicities of Cancer Therapies. Circulation, 133, 1272-1289.
https://doi.org/10.1161/circulationaha.115.018347
[68]  Kirchmair, R., Tietz, A.B., Panagiotou, E., Walter, D.H., Silver, M., Yoon, Y., et al. (2007) Therapeutic Angiogenesis Inhibits or Rescues Chemotherapy-Induced Peripheral Neuropathy: Taxol-and Thalidomide-Induced Injury of Vasa Nervorum Is Ameliorated by VEGF. Molecular Therapy, 15, 69-75.
https://doi.org/10.1038/sj.mt.6300019
[69]  Bryce, Y., Santos-Martin, E., Ziv, E., Gonzalez-Aguirre, A., Moussa, A., Friedman, A., et al. (2022) Abnormal Photoplethysmography Waveforms Are Associated with Chemotherapy Induced Neuropathy. Vasa, 51, 85-92.
https://doi.org/10.1024/0301-1526/a000987

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133