|
自动驾驶高精地图众包更新关键技术及机制
|
Abstract:
本文主要探讨了自动驾驶技术的快速发展及其对高精度地图实时更新的需求。分析基于不同数据的众包地图构建方法在自动驾驶高精地图中的关键作用以及不同地图更新要素的更新方法。其次,细化了高精地图更新的关键技术,综述了众源式高精度地图动态更新可靠性的方法;说明了如今数据采集传感器的多样性选择和相应的方法;总结了国内外数据模型的研究现状;描述了众包模式下奖励机制的重要程度。归纳了高精地图平台对自动驾驶的支持与作用,以及存在数据质量、信息安全、法律法规等问题与方法。
This paper explores the rapid development of autonomous driving technology and its demand for real-time updates of high-precision maps. It analyzes the critical role of crowdsourced map-building methods based on different data types in high-precision maps for autonomous driving, as well as the update methods for various map update elements. Furthermore, it details the key technologies for updating high-precision maps, reviews methods for ensuring the reliability of dynamically updated crowdsourced high-precision maps, and explains the diversity of current data collection sensors and their respective methods. The paper also summarizes the research status of domestic and international data models and describes the importance of reward mechanisms in crowdsourcing models. It concludes by summarizing the support and role of high-precision map platforms in autonomous driving and discusses issues and methods related to data quality, information security, and legal regulations.
[1] | 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8): 939-953. |
[2] | 吴华意, 黄蕊, 游兰, 等. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11): 1341-1356. |
[3] | 杨伟, 艾廷华. 基于众源轨迹数据的道路中心线提取[J]. 地理与地理信息科学, 2016, 32(3): 1-7. |
[4] | 李跃, 邱致和. 导航与定位[M]. 北京: 国防工业出版社, 2008. |
[5] | Cho, M., Kim, K., Cho, S., Cho, S. and Chung, W. (2022) Frequent and Automatic Update of Lane-Level HD Maps with a Large Amount of Crowdsourced Data Acquired from Buses and Taxis in Seoul. Sensors, 23, Article 438. https://doi.org/10.3390/s23010438 |
[6] | Kim, K., Cho, S. and Chung, W. (2021) HD Map Update for Autonomous Driving with Crowdsourced Data. IEEE Robotics and Automation Letters, 6, 1895-1901. https://doi.org/10.1109/lra.2021.3060406 |
[7] | Zhang, P., Zhang, M. and Liu, J. (2021) Real-Time HD Map Change Detection for Crowdsourcing Update Based on Mid-To-High-End Sensors. Sensors, 21, Article 2477. https://doi.org/10.3390/s21072477 |
[8] | Qin, T., Huang, H., Wang, Z., Chen, T. and Ding, W. (2023) Traffic Flow-Based Crowdsourced Mapping in Complex Urban Scenario. IEEE Robotics and Automation Letters, 8, 5077-5083. https://doi.org/10.1109/lra.2023.3291507 |
[9] | Kim, C., Cho, S., Sunwoo, M. and Jo, K. (2018) Crowd-Sourced Mapping of New Feature Layer for High-Definition Map. Sensors, 18, Article 4172. https://doi.org/10.3390/s18124172 |
[10] | Yang, X., Tang, L., Niu, L., Zhang, X. and Li, Q. (2018) Generating Lane-Based Intersection Maps from Crowdsourcing Big Trace Data. Transportation Research Part C: Emerging Technologies, 89, 168-187. https://doi.org/10.1016/j.trc.2018.02.007 |
[11] | Zhou, J., Guo, Y., Bian, Y., Huang, Y. and Li, B. (2023) Lane Information Extraction for High Definition Maps Using Crowdsourced Data. IEEE Transactions on Intelligent Transportation Systems, 24, 7780-7790. https://doi.org/10.1109/tits.2022.3222504 |
[12] | Tchuente, D., Senninger, D., Pietsch, H. and Gasdzik, D. (2021) Providing More Regular Road Signs Infrastructure Updates for Connected Driving: A Crowdsourced Approach with Clustering and Confidence Level. Decision Support Systems, 141, Article ID: 113443. https://doi.org/10.1016/j.dss.2020.113443 |
[13] | Ren, S., He, K., Girshick, R. and Sun, J. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149. https://doi.org/10.1109/tpami.2016.2577031 |
[14] | Li, Z., Liu, X., Huang, Y. and Chen, H. (2023) Probabilistic Coverage Constraint Task Assignment with Privacy Protection in Vehicular Crowdsensing. Sensors, 23, Article 7798. https://doi.org/10.3390/s23187798 |
[15] | Zohar, T., Ariav, I. and Bar-Zohar, M. (2012) Robust and Efficient Change Detection Algorithm Based on 3D Line Segments. 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, Eilat, 14-17 November 2012, 1-5. https://doi.org/10.1109/eeei.2012.6376932 |
[16] | Suzuki, T., shirakabe, S., Miyashita, Y., et al. (2017) Semantic Change Detection with Hypermaps. arXiv: 1604.07513. https://arxiv.org/abs/1604.07513 |
[17] | Cui, B., Xia, Y., Zhao, H., et al. (2024) Models for Optimizing Traffic Flow in Unmanned Mining Road Networks Based on High-Precision Maps. Industrial Engineering and Innovation Management, 7, 17-24. |
[18] | Jo, K., Kim, C. and Sunwoo, M. (2018) Simultaneous Localization and Map Change Update for the High Definition Map-Based Autonomous Driving Car. Sensors, 18, Article 3145. https://doi.org/10.3390/s18093145 |
[19] | Pannen, D., Liebner, M., Hempel, W. and Burgard, W. (2020) How to Keep HD Maps for Automated Driving up to Date. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, 31 May-31 August 2020, 2288-2294. https://doi.org/10.1109/icra40945.2020.9197419 |
[20] | Kim, C., Jo, K., Bradai, B. and Sunwoo, M. (2017) Multiple Vehicles Based New Landmark Feature Mapping for Highly Autonomous Driving Map. 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, 25-26 October 2017, 1-6. https://doi.org/10.1109/wpnc.2017.8250071 |
[21] | Herb, M., Weiherer, T., Navab, N. and Tombari, F. (2019) Crowd-sourced Semantic Edge Mapping for Autonomous Vehicles. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, 3-8 November 2019, 7047-7053. https://doi.org/10.1109/iros40897.2019.8968020 |
[22] | 刘建平, 郑阳, 郑望晓. 高精度地图的应用和更新方案[J]. 汽车实用技术, 2021, 46(12): 27-29. |
[23] | Dabeer, O., Ding, W., Gowaiker, R., Grzechnik, S.K., Lakshman, M.J., Lee, S., et al. (2017) An End-To-End System for Crowdsourced 3D Maps for Autonomous Vehicles: The Mapping Component. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, 24-28 September 2017, 634-641. https://doi.org/10.1109/iros.2017.8202218 |
[24] | Cao, X., Yang, P., Lyu, F., Han, J., Li, Y., Guo, D., et al. (2021) Trajectory Penetration Characterization for Efficient Vehicle Selection in HD Map Crowdsourcing. IEEE Internet of Things Journal, 8, 4526-4539. https://doi.org/10.1109/jiot.2020.3028026 |
[25] | Tang, L., Yang, X., Kan, Z. and Li, Q. (2015) Lane-Level Road Information Mining from Vehicle GPS Trajectories Based on Naïve Bayesian Classification. ISPRS International Journal of Geo-Information, 4, 2660-2680. https://doi.org/10.3390/ijgi4042660 |
[26] | Guo, Y., Li, B., Lu, Z. and Zhou, J. (2021) A Novel Method for Road Network Mining from Floating Car Data. Geo-spatial Information Science, 25, 197-211. https://doi.org/10.1080/10095020.2021.2003165 |
[27] | Jiang, L., Li, W., Fu, B. and Bai, L. (2022) A Muti-Layer Fault Component Identification Method Based on Muti-Source Information Fusion in Distribution Power Grid. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, 15-17 April 2022, 1679-1683. https://doi.org/10.1109/acpee53904.2022.9783639 |
[28] | Courbon, J., Mezouar, Y. and Martinet, P. (2009) Autonomous Navigation of Vehicles from a Visual Memory Using a Generic Camera Model. IEEE Transactions on Intelligent Transportation Systems, 10, 392-402. https://doi.org/10.1109/tits.2008.2012375 |
[29] | Huang, Y., Zhou, J., Li, X., Dong, Z., Xiao, J., Wang, S., et al. (2023) Menet: Map-Enhanced 3D Object Detection in Bird’s-Eye View for Lidar Point Clouds. International Journal of Applied Earth Observation and Geoinformation, 120, Article ID: 103337. https://doi.org/10.1016/j.jag.2023.103337 |
[30] | Wan, G., Yang, X., Cai, R., Li, H., Zhou, Y., Wang, H., et al. (2018) Robust and Precise Vehicle Localization Based on Multi-Sensor Fusion in Diverse City Scenes. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, 21-25 May 2018, 4670-4677. https://doi.org/10.1109/icra.2018.8461224 |
[31] | 杨蒙蒙, 江昆, 温拓朴, 等. 自动驾驶高精度地图众源更新技术现状与挑战[J]. 中国公路学报, 2023, 36(5): 244-259. |
[32] | 王冕. 面向自动驾驶的高精度地图及其应用方法[J]. 地理信息世界, 2020, 27(4): 109-114. |
[33] | 贺勇, 路昊, 王春香, 等. 基于多传感器的车道级高精细地图制作方法[J]. 长安大学学报(自然科学版), 2015, 35(s1): 274-278. |
[34] | 江昆, 杨殿阁, 柳超然, 等. 一种适用于自动驾驶汽车的多层地图模型和车道级轨迹规划[J]. Engineering, 2019, 5(2): 266-295. |
[35] | 王舒曼, 应申, 蒋跃文, 等. 智能驾驶场景中高精地图动静态数据关联方法[J]. 武汉大学学报(信息科学版), 2024, 49(4): 640-650. |
[36] | 张攀, 刘经南. 通用化高精地图数据模型[J]. 测绘学报, 2021, 50(11): 1432-1446. |